小学奥数抽屉原理中的“最少”和“至少”是什么
时间:
燕妮2
奥数题及答案
“题海无边,题型有限”。学习数学必须要有扎实的基本功,有了扎实的基本功再进行“奥数”的学习就显得水到渠成了。方法网为大家准备了小学奥数抽屉原理中的“最少”和“至少”应用题专项练习及解析,希望可以帮助到你们,助您快速通往高分之路!!
小学奥数抽屉原理中的“最少”和“至少”是什么
方法网小编告诉你:
1、在抽屉问题中,一直认为,“最少”应该是指运气最好的情况下,“至少”应该是指运气最差的情况。这种认识对吗?
2、具体到一道题:“某次数学、英语测试,所有参加测试者的得分都是自然数,最高得分198,最低得分169,没有得193分、185分和177分者,并且至少有6人得同一分数,参加测试的至少人?”这道题的答案应该是27×5+1=136呢?还是27+5=32呢?
3、同样是上面这道题,把“至少”改为“最少”?
4、同样是上面这道题,把最后两句倒一下,改为“参加测试的至少人,才能保证至少有6人得同一分数”,答案应该可以肯定为136了吧?
解析:
至少和最少的意思是一样的,并没有本质的区别。在抽屉原理中,“至少”和“最少”通常要和“保证”联系在一起看。
例如:
箱子中有黑白两种棋子,最少要拿多少颗棋子才能有2颗一样的颜色?
箱子中有黑白两种棋子,至少要拿多少颗棋子才能有2颗一样的颜色?
两题的答案都是2(因为没有保证,所以只需要考虑最好的情况就行了)
再例如:
箱子中有黑白两种棋子,最少要拿多少颗棋子才能保证有2颗一样的颜色?
箱子中有黑白两种棋子,至少要拿多少颗棋子才能保证有2颗一样的颜色?
两题的答案都是3(应用抽屉原理)
至于上面的题目,“并且至少有6人得同一分数"有歧义,至少有2种解释,没有办法做。