初二数学实数知识点解析
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。今天学习啦小编将与大家分享:初二数学的实数相关知识点解析。具体内容如下:
实数知识点解析一.定义
1.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a叫做被开方数.
2.一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方.
3.一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.求一个数的立方根的运算,叫做开立方.
4.任何一个有理数都可以写成有限小数或无限循环小数的形式.任何有限小数或无限循环小数也都是有理数.
5.无限不循环小数又叫无理数.
6.有理数和无理数统称实数.
7.数轴上的点与实数一一对应.平面直角坐标系中与有序实数对之间也是一一对应的.
实数知识点解析二.重点
1.平方与开平方互为逆运算.
2.正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根.
3.当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位.
4.当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位.
5.数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
实数知识点解析三.注意
1.被开方数一定是非负数.
2.0,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.
3.带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式.
实数知识点解析四、性质
基本运算
实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
四则运算封闭性
实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。
有序性
实数集是有序的,即任意两个实数a、b必定满足并且只满足下列三个关系之一:ab。
传递性
实数大小具有传递性,即若a>b,且b>c,则有a>c。
阿基米德性质
实数具有阿基米德性质(Archimedean property),即∀a,b ∈R,若a>0,则∃正整数n,na>b。
稠密性
实数集R具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数.
数轴
如果在一条直线(通常为水平直线)上确定O作为原点,指定一个方向为正方向(通常把指向右的方向规定为正方向),并规定一个单位长度,则称此直线为数轴。任一实数都对应与数轴上的唯一一个点;反之,数轴上的每一个点也都唯一的表示一个实数。于是,实数集R与数轴上的点有着一一对应的关系。
完备性
作为度量空间或一致空间,实数集合是个完备空间,它有以下性质:
一. 所有实数的柯西序列都有一个实数极限。
有理数集合就不是完备空间。例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) 是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限 。
实数是有理数的完备化——这亦是构造实数集合的一种方法。
极限的存在是微积分的基础。实数的完备性等价于欧几里德几何的直线没有“空隙”。
二. “完备的有序域”
实数集合通常被描述为“完备的有序域”,这可以几种解释。
首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素z,z+1将更大)。所以,这里的“完备”不是完备格的意思。
另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。
这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R 并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。
“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是 R 的子域。这样 R 是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。
高级性质
实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。实际上,实数集的势为 2ω(请参见连续统的势),即自然数集的幂集的势。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。事实上这假设独立于ZFC集合论,在ZFC集合论内既不能证明它,也不能推出其否定。
所有非负实数的平方根属于R,但这对负数不成立。这表明R 上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于 R。这两个性质使R成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。
实数集拥有一个规范的测度,即勒贝格测度。
实数集的上确界公理用到了实数集的子集,这是一种二阶逻辑的陈述。不可能只采用一阶逻辑来刻画实数集:1. Löwenheim–Skolem theorem定理说明,存在一个实数集的可数稠密子集,它在一阶逻辑中正好满足和实数集自身完全相同的命题;2. 超实数的集合远远大于 R,但也同样满足和 R一样的一阶逻辑命题。满足和 R 一样的一阶逻辑命题的有序域称为 R 的非标准模型。这就是非标准分析的研究内容,在非标准模型中证明一阶逻辑命题(可能比在R中证明要简单一些),从而确定这些命题在R 中也成立。
拓扑性质
实数集构成一个度量空间:x 和 y 间的距离定为绝对值 |x - y|。作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是 1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。但实数集不是紧致空间。这些可以通过特定的性质来确定,例如,无限连续可分的序拓扑必须和实数集同胚。以下是实数的拓扑性质总览:
i.令a 为一实数。a 的邻域是实数集中一个包括一段含有 a 的线段的子集。
ii.R 是可分空间。
iii.Q 在 R 中处处稠密。
iv.R的开集是开区间的联集。
v.R的紧子集是有界闭集。特别是:所有含端点的有限线段都是紧子集。
vi.每个R中的有界序列都有收敛子序列。
vii.R是连通且单连通的。
viii.R中的连通子集是线段、射线与R本身。由此性质可迅速导出中间值定理。