高分网 > 初中学习方法 > 初二学习方法 > 初二数学 >

八年级数学期末试卷分析

时间: 如英2 初二数学

  八年级数学期末试卷分析(一)

  1.试题结构的分析

  本套试题满分100分,由选择题、填空题、解答题三大块26个小题组成。其中客观性题目约占50分,主观性题目占50分。代数占71分,几何占29分。具体为第十一章《全等三角形》,第十二章《轴对称》共占29分,第十三章《实数》5分,第十四章《一次函数》40分,第十五章《整式乘除》26分。体现函数的重要性。

  整套试卷难度系数较大。

  2.具体试题的特点

  (1) 仍然注重“双基”的考查

  试卷中选择题的1-8小题,填空中的11-16题,解答题中的19-21题,22题的第一问,23题的第一问考察的都是基本知识点的理解运用能力、计算能力和基本作图能力。

  (2)强调能力,注重对数学思维过程、方法的考查

  试卷中不仅考查学生对八年级数学基础知识的掌握情况,而且也考查了学生以这些知识为载体,在综合运用这些知识的过程中所反映出来的基本的数学能力,初中阶段数学能力主要是指运算能力、思维能力和空间想象能力,以及运用所学知识分析、解决问题的能力等。

  (3)注重灵活运用知识和探求能力的考查

  试卷积极创设探索思维,重视探索性试题的设计,如第9题、24题、25题,考查学生灵活运用知识与方法的能力;

  (4)重视阅读理解、获取信息能力的考查

  从文字、图象中获取信息和处理信息的能力是新课程特别强调的。如第9题、18题、24题、25题等,较好地实现了对这方面能力的考查,强调了培养学生在现代社会中获取和处理信息能力的要求。如25题先是感受理解,学生百分百得全分,然后是自主学习通过学阅读给出解决问题的方法,最后是学以致用,考察学生用即学知识解决新问题的能力。

  (5)重视联系实际生活,突出数学应用能力的考查

  试卷多处设置了实际应用问题,如第10、18、 24、26题、考查学生从实际问题中抽象函数模型的能力,体验运用数学知识解决实际问题的情感,试题取自学生熟悉的生活实际,具有时代气息与教育价值,如26题,让学生感到现实生活中充满了数学,并要求活学活用数学知识解决实际问题的能力,有效地考查了学生应用数学知识解决实际问题的能力,培养用数学,做数学的意识。

  三、试题做答情况分析

  试题在设计上注意了保持一定的梯度,不是在最后一题难度加大,而是注意了难度分散的命题思想,使每个学生在每道题中都能感到张弛有度。向选择题的9、10 ,填空题的17、18,22题的(3)(4)小问,23题的(2)问,24题25题的(2)问,26(2)问难度都很大。

  本次测八一班的平均分是60.3分,及格率是57.7%,优秀率是8.1%,最高分是94分,最低分是12分。

  从这些试卷中可以看出答得较好的有第一题、第二题、第三题的19、20、21题,答得较差的是第三题的23、24、25题。

  四、教学启示与建议

  通过对以上试卷的分析,在今后的教学过程中应注意以下几个方面:

  1.研读新课程标准,指导教学工作

  平时教学要研读数学课程标准,将数学课程标准所倡导的教学理念落实到自己的教学中。近几年的中考中有不少试题体现了数学应用思想、实践与操作、过程与方法,探究学习等新课程理念,因此,在教学中应以新课程理念为指导,重视让学生动手实践、自主探索和合作交流等教学方式的运用,给学生一定的时间和空间,教师要适时启发引导。特别在我们“学案导学-合作学习”教学模式中要关注生生交流,师生交流让学生用数学语言表达清楚自己的思想,让同伴听懂,并鼓励生生之间开展辩论式的讨论。特别是八年级下半年,学生的逻辑思维能力以达到一定水平,应让学生今早的接触中考题型,以减轻九年级的负担。

  2.面向全体,夯实基础

  正确理解新课标下的基本知识、基本技能。“双基”要教学面向全体学生,做到用课本教,而不是教课本,以课本的例题、习题为素材,做到“举一隅不以三隅反,则不复也。”同时要特别关心数学学习困难的学生,向我们的走读班,学生基础太差,很多学生失去了学数学的信心。我们一定要通过学习兴趣培养学习方法指导,从“双基”做起,降低标准。使他们达到学习的基本要求,充分体现教育的价值在于“让不同的学生得到不同的发展。”

  3.注重应用,培养能力

  数学教学中应经常关注社会生活,注重情感设置,引导学生从所熟悉的实际生活出发,通过观察分析,归纳抽象出数学概念和规律,让学生不断体验数学与生活的联系,在提高学习兴趣的同时,培养学生的分析能力和建模能力;同时要加强思维能力和创新意识的培养,在教学中,要激发学生的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性的解决问题。而我们的学生恰恰解决实际问题能力较差。

  以上是我对上学期期末八年级数学试卷的分析

  八年级数学期末试卷分析(二)

  一、试卷分析

  本套试卷共6页,分值为100分。主要考察了八年级数学第十六章分式和十七章反比例函数的内容。其中包括:分式、分式的运算、分式的方程、反比例函数及其性质以及实际问题与反比例函数。试卷的总体难度适宜,能坚持“以纲为纲,以本为本的原则”,注重考察基础知识的掌握,覆盖面较广,控制题目的烦琐程度,题目力求简洁明快,不在运算的复杂上做文章。

  第一题为选择题共十个小题,学生出错率较高的题有2、3、6、8、10。第2题涉及到分式的运算,题目难度适中,部分学生由于粗心马虎造成失分;第3题考查反比例函数性质的掌握,题目比较容易,学生对反比例函数的基本性质掌握不熟练导致出错;第6小题考查解分式方程中化分式方程为整式方程,本小题涉及到变号问题,学生做起来感觉吃力;第8和10小题涉及到实际问题,学生应用数学知识解决实际问题的能力较弱,所以出错率较高。

  第二题为填空题共七个小题,学生出错率较高的题是12和16。其中12题考查反比例函数的形式及其性质,出错的原因还是基础知识掌握不牢。16题涉及到“增根”,学生出错是由于对增根的理解不到位。

  第三题为解答题共七个小题。18题考查分式的混合运算,19题考查解分式方程,题目难度较低,属于简单题。20题是先化简再求值。实质也是考查分式的混合运算,只是难度较18题略有提高,学生多在化简过程中出现错误。21题主要考查用待定系数法确定反比例函数的关系式,题目简单,学生一般会拿到分数。22题实质也是解分式方程,是对解分式方程能力的拓展和提高,有一定难度,学生出错率也较高。23题是列分式方程解应用题,难度适中,学生出错的原因与8和10相同。24小题考查反比例函数与实际问题,难度不大,一般都能做对。

  二、学生分析

  我所带班级是八年级一班,学生程度参差不齐,两级分化现象严重。学生学习氛围不太浓厚,部分学生学习态度不端正。程度较好的学生对题目的应变能力较弱,程度一般的学生对基础知识的掌握还有欠缺,对部分概念的理解不到位。学生普遍存在的问题就是解决实际问题能力较弱。

  三、改进措施

  在今后教学中应做如下改进:

  1、 回归课本,夯实基础

  我们要加强基础知识教学和训练,使学生掌握必要的基础知识、基本技能和基本方法。同时加强学生对基本概念的理解,依据大纲要求,不脱离课本,加强训练,打好初中数学基础。

  2、 尊重学生个体差异,因材施教

  学生程度良莠不齐,我们应该因材施教,特别是后进生,应给与更多帮助和关注,避免学生掉队的情况出现。同时鼓励优等生,使其不断进步。

  3、 关注生活,加强应用

  使学生能用数学眼光认识世界,并能用数学知识和数学方法处理解决周围的实际问题。教学中要时常关注社会生活实际,编拟一些贴近生活,贴近实际,有着实际背景的数学应用性试题,引导学生学会阅读、审题、获取信息、解决问题。切实提高学生解决实际问题的能力。

  4、 强化训练,提高计算能力

  在夯实基础的前提下,强化训练,不仅可以提高学生的解题计算能力,还能加深学生对基础知识的理解。对例题、习题、练习题和复习题等,不能就题论题,要以题论法,以题为载体,变换试题,探究解法,研究与其他试题的联系与区别,挖掘出其中蕴涵的数学思想方法等,将试题的知识价值、教育价值一一解析。

  八年级数学期末试卷分析(三)

  一、试卷整体分析:

  1、注重学生基础知识和基本技能的考查,整个试卷上的题目能够做到起点低。针对学生来说得分点,容易得分,能够做到考察学生对基础知识的掌握程度和基本解题技巧及方法的运用。

  2、所考察的知识点全面、覆盖面大,考试的内容均能设计到,而且所考察的重点突出,相对比较合理,但部分考察的内容超出考试范围,小部分考察的内容较难,部分学生不能够动手去做。

  二、学生答题情况分析:

  1、从整体试卷的难易情况看,此次数学测试题难度适中,以常规题居多,但从检测情况来看,部分学生答题情况欠佳,下面逐题简要说明:

  第一题选择题,因为起点低,基础性强,学生得分情况比较好,但7、8题稍有点难度,从而得分情况不是很好;

  第二题填空题,因为比较容易,得分情况也比较好,但最后两题有些偏难。其中第15小题多数同学是靠猜想得出的结论;第16小题,由于前面有范例,从而降低了难度,中上水平的同学都能做出来。

  第三大题,此题整体难度不大,得分情况还是很好,但少数同学仍然是计算出了问题,说明基础掌握不扎实,尤其是第18小题、19小题得分较差,重要原因是学生灵活性不够,运用数学知识解决数学问题的能力不强。第22、23小题证明题,出现两极分化现象,优秀的学生解答思路清晰、书写完整,而基础差的同学根本不会证明,逻辑思维混乱,不知如何证明。最后一题得分率较低,主要是教师对于这一方面的类型题训练不够,再加上学生不能将问题中的主要信息进行提炼,将实际问题能化为数学问题进行解决。

  2、学生在解答试卷的过程中存在的问题:

  、①对初中数学中的概念、法则、性质、公式的理解存储、提取、应用均存在明显的差距,不理解概念的实质,死记硬背,因而不能在一定的数学情境中正确运用概念,不能正确辨明数学关系,导致运算推理出现错误;

  ②运算技能偏低,训练不到位,由此造成的失分现象严重,计算上产生的错误几乎遍及所有涉及到计算的问题,我们的考生的确存在一批运算的“低能儿”,运算能力差是造成他们数学成绩偏低的主要原因之一;

  ③在推理论证过程中不能合乎逻辑地、准确地表述自己的思想,出现层次不清,逻辑不严密,语言表述混乱的现象。

  三、教学建议:

  1、狠抓基础,对基础知识不能只管停留于知识的表面,还要让学生知其所以然,训练中突出基础知识的应用;

  2、培养学生良好的习惯,掌握基本的数学思想和数学方法,教会学生如何正确分析题目;

  3、加强学生能力的培养,对学生能力的培养不要急于求成,而要始终贯穿于教学的主过程之中,特别注重学生应用知识的能力,阅读理解能力,探索创新的能力的培养;

  4、不断学习,改进教学方法,主要以新的课标的准绳来组织课堂教学、加强探索式教学,全面培养学生的能力。

  八年级数学期末试卷分析(四)

  一、总体评价:

  本套试题本着“突出能力,注重基础,创新为魂的命题原则。按照《数学课程标准》的有关要求,突出了数学学科是基础的学科,八年级数学在中考中占的比例又大的特点,在坚持全面考察学生的数学知识、方法和数学思想的基础上,积极探索试题的创新,试卷层次分明、难易有度,既有对基础知识、基本技能的基础题,又有对数学思想、数学方法的领悟及数学思维的水平客观上存在差异的区分题,试题的立意鲜明,取材新颖、设计巧妙,贴近学生生活实际,体现了时代气息与人文精神的要求。并且鼓励学生创新,加大创新意识的考察力度,突出试题的探索性和开放性,整套试卷充分体现课改精神。

  试题没有超纲、超本现象,易、中、难保持在7:2:1的分配原则。

  二、试题的结构、特点的分析:

  1.试题结构的分析:

  本套试题满分100分,三道大题包含25道小题,其中客观性题目占30分,主观性题目占70分。代数占58分,几何占42分。具体为第十七章《分式》11分,第十八章《函数及其图像》17分,第十九章《全等三角形》24分,第二十章《平行四边形的判定》18分,第二十一章《数据的整理与初步处理》28分,找规律2分。

  2.试题的特点:

  (1)强调能力,注重对数学思维过程、方法的考查

  试卷中不仅考查学生对八年级数学基础知识的掌握情况,而且也考查了学生以这些知识为载体,在综合运用这些知识的过程中所反映出来的基本的数学能力,初中阶段数学能力主要是指运算能力、思维能力和空间想象能力,以及运用所学知识分析、解决问题的能力等。《数学课程标准》明确指出:使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和理解。

  (2)注重灵活运用知识和探求能力的考查

  试卷积极创设探索思维,重视开放性、探索性试题的设计,如第14题、18题、20题,考查学生灵活运用知识与方法的能力;第23题、24题、25题题等具有开放性、探索性,有利于考查不同层次的学生分析、探求、解决问题的能力。

  (3)重视阅读理解、获取信息和数据处理能力的考查

  从文字、图象、数据中获取信息和处理信息的能力是新课程特别强调的。如第12题、13题、14题、15题等,较好地实现了对这方面能力的考查,强调了培养学生在现代社会中获取和处理信息能力的要求。

  (4)重视联系实际生活,突出数学应用能力的考查

  试卷多处设置了实际应用问题,如第6、7题,考查学生从实际问题中抽象数学模型的能力,体验运用数学知识解决实际问题的情感,试题取自学生熟悉的生活实际,具有时代气息与教育价值,如23、24题,让学生感到现实生活中充满了数学,并要求活学活用数学知识解决实际问题的能力,有效地考查了学生应用数学知识解决实际问题的能力,培养用数学,做数学的意识。

  三、试题做答情况分析:

  试题在设计上注意了保持一定的梯度,不是在最后一题难度加大,而是注意了难度分散的命题思想,使每个学生在每道题中都能感到张弛有度。

  通过对1班和2班的试卷进行分析,本次测试1班平均分是84.86分,及格率是97.48%,优秀率是58.20%,最高分是100分,最低分是38分。2班平均分是、及格率是、优秀率是,

  从这些试卷中可以看出答得较好的有第一题、第二题、第三题的19、21、23、24题,答得一般的有第三题的22、25题。

  四、教学启示与建议:

  通过对以上试卷的分析,在今后的教学过程( )中应注意以下几个方面:

  1.研读新课程标准,以新课程理念指导教学工作

  平时教学要研读数学课程标准,将数学课程标准所倡导的教学理念落实到自己的教学中。从学生已有知识和生活经验出发,创设问题情境,激发学生的学习积极性,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学经验。

  2.面向全体,夯实基础

  正确理解新课标下“双基”的含义,数学教学中应重视基本概念、基本图形、基本思想方法的教学和基本运算及分析问题、解决问题、运用等能力的培养。面向全体学生,做到用课本教,而不是教课本,以课本的例题、习题为素材,结合本校的实际情况,举一反三地加以推敲、延伸和适当变形,以期达到初中生“人人掌握必须的数学”,同时要特别关心数学学习困难的学生,通过学习兴趣培养学习方法指导,使他们达到学习的基本要求,充分体现教育的价值在于“让不同的学生得到不同的发展。”

  3.注重应用,培养能力

  数学教学中应经常关注社会生活,注重情感设置,引导学生从所熟悉的实际生活中和相关学科的实际问题出发,通过观察分析,归纳抽象出数学概念和规律,让学生不断体验数学与生活的联系,在提高学习兴趣的同时,培养学生的分析能力和建模能力;同时要加强思维能力和创新意识的培养,在教学中,要激发学生的好奇心和求知欲,通过独立思考,不断追求 新知,发现、提出、分析并创造性的解决问题,使数学学习成为再发现、再创造的过程,教师应选配或设计一定数量的开放性问题、探索性问题,为培养学生的创新意识提供机会,鼓励学生对某些数学问题进行探讨。

  4.关注本质,指导教学

  近几年的中考中有不少试题体现了数学应用思想、实践与操作、过程与方法,探究学习等新课程理念,因此,在教学中应以新课程理念为指导,重视让学生动手实践、自主探索和合作交流等教学方式的运用,给学生一定的时间和空间,教师要适时启发引导。合作交流中,让学生充分表达自己的思想,包括不同观点、质疑等,教师要耐心倾听,并引导学生讨论。特别要关注生生交流,让学生用数学语言表达清楚自己的思想,让同伴听懂,以及理解和所懂同伴表达的数学思想,并鼓励生生之间开展辩论式的讨论。活动中,要关注数学本质,数学活动之后,要引导学生自主反思、归纳小结活动中隐含的或发现的数学规律,让学生真正体验和经历数学变化的过程。

  以上是我对上学期期末八年级数学试卷的分析,我相信在我和全体学生的共同努力下,数学成绩一定会跃上一个新的台阶。

看过“八年级数学期末试卷分析”

44424