初一数学有理数加法计算
在数学上,有理数是一个整数a和一个非零整数b的比,例如3/8,通则为a/b,故又称作分数。0也是有理数,也是整数。有理数是整数和分数的集合,整数亦可看做是分母为一的分数。有理数的小数部分有限或为循环。不是有理数的实数遂称为无理数。有理数集可用大写黑正体符号Q代表。但Q并不表示有理数,Q表示有理数集。
有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数(rational number)。有理数的小数部分有限或为循环。不是有理数的实数遂称为无理数。
今天学习啦小编要跟大家分享的是:初一数学有理数加法计算,具体内容如下,希望能帮助到大家!
初一数学有理数的加法:
一只蜗牛不小心掉进了一口枯井。一只癞蛤蟆爬过来对蜗牛说:“这井有10米深,你小小的年纪,又背负着这么重的壳,怎么能爬上去呢?”“我不怕苦、不怕累,每天爬一段,总能爬出去!”第二天,蜗牛就开始顺着井壁往上爬了。它不停的爬呀爬,到了傍晚终于爬了5米。蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就能爬上去。”想着想着,它不知不觉地睡着了。早上醒来,它心里一惊:“我怎么离井底这么近?”原来,蜗牛睡着以后从井壁上滑下来4米。蜗牛叹了一口气,咬紧牙又开始往上爬。到了傍晚又往上爬了5米,可是晚上蜗牛又滑下4米。爬呀爬,最后坚强地蜗牛终于爬上了井台。你能猜出来,蜗牛需要用几天时间才能爬上井台吗?由德智教育为您分析这道题:
有理数的加法是有理数运算的开始,因此它是进一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。同时,学好这部分内容,对减少两极分化、增强学生学习代数的信心具有十分重要的意义。
有理数的加法是有理数运算中非常重要的内容,它建立在小学算术运算的基础上。但是,它与小学的算术又有很大的区别,小学的加法运算不需要确定和的符号,运算单一,而有理数的加法,既要确定和的符号,又要计算和的绝对值。因此,有理数加法运算,在确定“和”的符号后,实质上是进行算术数的加法运算,思维过程就是如何把中学有理数的加法运算化归为小学算术的加减运算。
两个有理数相加,按符号异同划分为3类:
1、 两数同号
同号两数相加,取相同的符号,并把绝对值相加。
2、两数异号
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;绝对值相等的异号两数相加,和为0。
3、 有一个加数为0
一个数同0相加,仍得这个数。