高分网 > 初中学习方法 > 初一学习方法 > 初一数学 >

初一学生学好数学的学习方法

时间: 美琪 初一数学

启发学生认识到科学的学习方法是提高学习成绩的重要因素,并把这一思想贯穿于整个教学过程之中。可以通过讲述数学名人的故事,激励学生。

(2)形成良好的非智力因素

非智力因素是学习方法指导得以进行的基础。初一学生好奇心强烈,但学习的持久性不长,如果在教学中具有积极的非智力因素基础,可以使学生学习的积极性长盛不衰。激发学习动机,即激励学生主体的内部心理机制,调动其全部心理活动的积极性。

锻炼学习数学的意志。心理学家认为:意志在克服困难中表现,也在经受挫折、克服困难中发展,困难是培养学生意志力的"磨刀石".我认为应该以练习为主,在初一的数学练习中,要经常给学生安排适当难度的练习题,让他们付出一定的努力,在独立思考中解决问题,但注意难度必须适当,因为若太难会挫伤学生的信心,太易又不能锻炼学生的意志。

养成良好的数学学习习惯。有的孩子习惯"闷"题目,盲目的以为多做题就是学好数学的方法,这个不良的学习习惯,在平时的教学中老师一定要注意纠正。

(3)指导学生掌握科学的数学学习方法。

①合理渗透。在教学中要挖掘教材内容中的学法因素,把学法指导渗透到教学过程中。例如我在进行《完全平方公式》教学时,很多孩子老是漏掉系数2乘以首尾两项,于是我就给他们编了首顺口溜,"头平方,尾平方,头尾组合2拉走",这样选取生动、有趣的记忆法来指导学生学习,有利于突破知识的难点。②随机点拨。无论是在授课阶段还是在学生练习阶段,教师要有强烈的学法指导意识,抓住契机,画龙点睛地点拨学习方法。

③及时总结。在传授知识、训练技能时,教师要根据教学实际,及时引导学生把所学的知识加以总结。我在完成一个单元的学习之后都让孩子们养成自己总结的习惯,使单元重点系统化,并找出规律性的东西。

④迁移训练。总结所学内容,进行学法的理性反思,强化并进行迁移运用,在训练中掌握学法。

数学学习能力包括观察力、记忆力、思维力、想象力、注意力以及自学、交往、表达等能力。学习活动过程是一个需要深入探究的过程。在这一过程中,教师要挖掘教材因素,注意疏通信息渠道,善于引导学生积极思维,使学生不断发现问题或提出假设,检验解决问题,从而形成勇于钻研、不断探究的习惯,架设起学生由知识向能力、能力与知识相融合的桥梁。总之,初一是学生知识奠定的根基时期,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,学法与教法结合,课堂与课后结合,教师指导与学生探求结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法。为日后进一步进行数学学习打好良好的基础。

初中数学问的方法总结

(1)追问法。即在某个问题得到回答后,顺其思路对问题紧追不舍,刨根到底继续发问;

(2)反问法。根据教材和教师所讲的内容,从相反的方向把问题提出来;

(3)类比提问法。据某些相似的概念、定理、性质等的相互关系,通过比较和类推提出问题;

(4)联系实际提问法。结合某些知识点,通过对实际生活中一些现象的观察和分析提出问题。

此外,在提问时不仅要问其然,还要问其所以然。

初中数学数轴知识点

⒈数轴的概念

规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不

可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。

2.数轴上的点与有理数的关系

⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)

3.利用数轴表示两数大小

⑴在数轴上数的大小比较,右边的数总比左边的数大;

⑵正数都大于0,负数都小于0,正数大于负数;

⑶两个负数比较,距离原点远的数比距离原点近的数小。

4.数轴上特殊的(小)数

⑴最小的自然数是0,无的自然数;

⑵最小的正整数是1,无的正整数;

⑶的负整数是-1,无最小的负整数

5.a可以表示什么数

⑴a>0表示a是正数;反之,a是正数,则a>0;

⑵a<0表示a是负数;反之,a是负数,则a<0

⑶a=0表示a是0;反之,a是0,,则a=0

初中数学四边形知识点

1、平行四边形

性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;

两组对角分别相等的四边形是平行四边形;

对角线互相平分的四边形是平行四边形;

一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形

(1)矩形

性质:矩形的四个角都是直角;

矩形的对角线相等;

矩形具有平行四边形的所有性质

判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

(3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

3、梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

初中数学基础知识点

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

81864