高分网 > 高考 > 答题技巧 >

高考物理做题方法详解

时间: 美琪 答题技巧

2、分析物理过程,一个综合题,往往由若干彼此独立的子过程组合而成,这些过程又不是孤立的,他们之间存在着一定的制约关系,只要仔细分析物理过程,寻找到前后过程的联系,就能找到解决问题的途径。

3、选择合适的方法,从思维的角度看,供选择的方法包括分析法、综合法、假设法、取消法、反证法、递推法等等。从物理的角度看,供选择的方法包括模型化的方法、隔离分析的方法、等效变换的方法、叠加的思想方法、对称处理的方法、极端分析的方法等等。从数学的角度看,有代数法、几何方法,等等。

4、学会运用数学知识,根据物理规律列出问题中物理量的关系式,把物理问题转化为数学问题,实现了物理过程的数学化。列出物理量间的关系后,下面的任务就是采用的数学方法,准确地求出结果,注意运算的技巧可以简化运算程序,节省计算时间。

5、讨论验证结果,用量纲的方法检查结果;用数量级估算法检查结果;用特殊值假设法检查结果等。

高考物理高效学习方法

1.正确理解物理基本概念,熟练掌握物理基本规律

基本概念和基本规律是学习物理的基础,首先必须很好地掌握基本概念和规律。必须做到如下几点:

(1)每个概念和规律是怎样引出来的?

(2)定义、公式、单位或注意事项各是什么?

(3)其物理意义或适用条件是什么?

(4)与有关物理概念、规律的区别和联系是什么?

(5)这些概念和规律在高中物理中的地位和作用是什么?

(6)适度训练。

2.注意在阅读、语言表达及观察动手三个方面进行有效训练,制定合理目标

(1)在阅读能力训练上,能独立阅读教材,找出主要内容,写出读书笔记;

(2)在语言表达能力训练上,能用正确的物理术语描述物理概念及规律,能把一般的物理过程表达出来;

(3)在观察动手能力训练上,能细致观察物理现象,归纳出物理规律,能独立写出实验报告,处理实验数据。

3.独立主动地归纳总结

除课上认真听讲,做好课堂笔记外,课下还要在复习基础上重新整理课堂笔记,加强印象和记忆。每学完一章后,都要总结出详细的知识结构,从中掌握知识的内在联系和区别及其来龙去脉、纵横关系,建立起完整的知识体系,有助于同学们在分析物理过程中全面考虑问题,克服片面性。

4.重视建立物理模型,提高对物理问题分析能力

建立物理模型是研究物理问题的基本方法,是典型的“分析综合”思维方法的训练。同学们必须要善于学习,勤于思考,从教师讲解的典型例题和自己所做的习题中,归纳出各种物理模型,并明确其产生的条件和特征。当同学们头脑中有了建立物理模型的主观意识时,复杂的物理现象分解成的若干简单物理过程与物理模型联系起来,便使复杂的物理问题演变成一幅幅生动形象的物理画面,这样既丰富了同学们的想像力,也使问题迎刃而解,从而培养了同学们良好的学习习惯。

5.掌握各种物理思维分析方法的模式,进行正确思维

经常听到学生反映“老师讲课时听着都明白,自己做题时却不知从哪儿下手”,究其原因,就是学生还没有一个正确的思维方法。要想进行正确的思维,要做到以下三点:

(1)弄清物理基本概念和规律,使思维活动建立在概念和规律的基础上;

(2)要按物理内在规律进行思维,学生遇到一个问题,要弄清物体在什么条件下,遵从什么规律。需用什么公式,只要物理过程搞清楚了,题目就会容易做了;

(3)积累和总结几种物理思维分析方法模式,诸如受力分析法、等效代替法、运动状态分析法、能量状态分析法、电路等效变换法、电路中电势变化分析法等。我们所遇到的物理习题中有很多同类的习题,可以用类似的方法和步骤去解决。

6.强化“比较”和“类比”的思维方法训练

在学习中要经常做到,在表面上差异大的概念和规律通过“比较”找出他们的共性;对一些表面上相似的概念和规律,通过“比较”找出他们的差异,加深对概念和规律及物理现象的认识。例如“重力场”和“静电场”,表面看来存在着很大的差异,但它们之间有着共同点(同为势场),即重力和电场力做功与路径无关,因而可以引出重力势能和电势能的概念。再例如动量和功率,它们所具有的单位表面看来相似,但它们是根本不同的物理量。

另外对抽象的概念和规律的学习,还可采用“类比”法。例如电场、磁场像风一样,是看不见、摸不着的,但却是客观存在的。研究风时,可以从树枝摆动的方向、幅度来反映风力的方向和强弱;研究电场时引入检验电荷,研究磁场时引入通电导体,根据受力的大小、方向来研究电场,磁场的强弱和方向。用“类比”法可分解概念的难度,发展学生抽象思维能力。

7.强化思维训练

物理概念和规律建立之后,还要进行强化训练。强化思维训练是对基础知识的进一步加深巩固,是思维方法的具体应用,是使同学们灵活运用物理规律解决问题的有效手段。同学们要适量地多做一些物理练习题,特别要敢于做一些综合性较强、物理过程较复杂的练习题。通过不断训练,不断归纳总结,才能提高解决问题的能力。在训练中要注意“一题多解”和“一题多变”,运用“一题多解”可以达到“弄清一道题,明白一串理”的目的;运用“一题多变”可以培养同学们应用知识,灵活解决问题的应变能力。

高考物理知识点总结

时间和时刻:

①时刻的定义:时刻是指某一瞬时,是时间轴上的一点,相对于位置、瞬时速度、等状态量,一般说的“2秒末”,“速度2m/s”都是指时刻。

②时间的定义:时间是指两个时刻之间的间隔,是时间轴上的一段,通常说的“几秒内”,“第几秒”都是指的时间。

位移和路程:

①位移的定义:位移表示质点在空间的位置变化,是矢量。位移用又向线段表示,位移的大小等于又向线段的长度,位移的方向由初始位置指向末位置。

②路程的定义:路程是物体在空间运动轨迹的长度,是一个标量。在确定的两点间路程不是确定的,它与物体的具体运动过程有关。

位移与路程的关系:

位移和路程是在一段时间内发生的,是过程量,两者都和参考系的选取有关系。一般情况下位移的大小并不等于路程的大小。只有当物体做单方向的直线运动是两者才相等。

高考物理知识点总结

1、三相交变电流的产生:互成120°角的线圈在磁场中转动,三组线圈各自产生交变电流.

2、三相交变电流的特点:值和周期是相同的.

三组线圈到达值(或零值)的时间依次落后1/3周期.

3、电工学中分别用黄、绿、红三种颜色的线为相线(火线),黑色线为中性线(零线)。三组线圈产生三相交变电流可对三组负载供电,那么三组线圈和三个负载是怎样连接的呢?

4、端线、火线和中性线、零线.

从每个线圈始端引出的导线叫端线,也叫相线,在照明电路里俗称火线.从公共点引出的导线叫中性线,照明电路中,中性线是接地的叫做零线.

5、相电压和线电压.

端线和中性线之间的电压叫做相电压(U相)(即每一个线圈两端电压).

两条端线之间的电压叫做线电压(U线)(即2个线圈首端电压).

我国日常电路中,相电压是220V、线电压是380V.

6、三相AC的有关计算(其中w为线圈旋转角速度,Em为交压值)。

e1=Em__sin(wt)

e2=Em__sin(wt+2π/3)

e3=Em__sin(wt-2π/3)

高考物理公式总结

1气体的性质公式总结

1.气体的状态参量:温度:宏观上,物体的冷热程度;微观上,物体内部分子无规则运动的剧烈程度的标志

热力学温度与摄氏温度关系:T=t+273 {T:热力学温度(K),t:摄氏温度(℃)}

体积V:气体分子所能占据的空间,单位换算:1m3=103L=106mL

压强p:单位面积上,大量气体分子频繁撞击器壁而产生持续、均匀的压力,标准大气压: 1atm=1.013×105Pa=1900pxHg(1Pa=1N/m2)

2.气体分子运动的特点:分子间空隙大;除了碰撞的瞬间外,相互作用力微弱;分子运动速率很大

3.理想气体的状态方程:p1V1/T1=p2V2/T2 {PV/T=恒量,T为热力学温度(K)}

注:

(1)理想气体的内能与理想气体的体积无关,与温度和物质的量有关;

(2)公式3成立条件均为一定质量的理想气体,使用公式时要注意温度的单位,t为摄氏温度(℃),而T为热力学温度(K)。

2运动和力公式总结

1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止

2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}

3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}

4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理}

5.超重:FN>G,失重:FN

6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子

注:

平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

3力的合成与分解公式总结

1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2)

2.互成角度力的合成:

F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2

3.合力大小范围:|F1-F2|≤F≤|F1+F2|

4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx)

注:

(1)力(矢量)的合成与分解遵循平行四边形定则;

(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立;

(3)除公式法外,也可用作图法求解,此时要选择标度,严格作图;

(4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小;

(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

4常见的力公式总结

1.重力G=mg(方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)

2.胡克定律F=kx {方向沿恢复形变方向,k:劲度系数(N/m),x:形变量(m)}

3.滑动摩擦力F=μFN {与物体相对运动方向相反,μ:摩擦因数,FN:正压力(N)}

4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为静摩擦力)

5.万有引力F=Gm1m2/r2 (G=6.67×10-11N m2/kg2,方向在它们的连线上)

6.静电力F=kQ1Q2/r2 (k=9.0×109N m2/C2,方向在它们的连线上)

7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)

8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)

9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0)

注:

(1)劲度系数k由弹簧自身决定;

(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定;

(3)fm略大于μFN,一般视为fm≈μFN;

(4)其它相关内容:静摩擦力(大小、方向)〔见第一册P8〕;

(5)物理量符号及单位B:磁感强度(T),L:有效长度(m),I:电流强度(A),V:带电粒子速度(m/s),q:带电粒子(带电体)电量(C);

(6)安培力与洛仑兹力方向均用左手定则判定。

5万有引力公式总结

1.开普勒第三定律:T2/R3=K(=4π2/GM){R:轨道半径,T:周期,K:常量(与行星质量无关,取决于中心天体的质量)}

2.万有引力定律:F=Gm1m2/r2 (G=6.67×10-11N m2/kg2,方向在它们的连线上)

3.天体上的重力和重力加速度:GMm/R2=mg;g=GM/R2 {R:天体半径(m),M:天体质量(kg)}

4.卫星绕行速度、角速度、周期:V=(GM/r)1/2;ω=(GM/r3)1/2;T=2π(r3/GM)1/2{M:中心天体质量}

5.第一(二、三)宇宙速度V1=(g地r地)1/2=(GM/r地)1/2=7.9km/s;V2=11.2km/s;V3=16.7km/s

6.地球同步卫星GMm/(r地+h)2=m4π2(r地+h)/T2{h≈36000km,h:距地球表面的高度,r地:地球的半径}

注:

(1)天体运动所需的向心力由万有引力提供,F向=F万;

(2)应用万有引力定律可估算天体的质量密度等;

(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;

(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);

(5)地球卫星的环绕速度和最小发射速度均为7.9km/s。

6匀速圆周运动公式总结

1.线速度V=s/t=2πr/T

2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V2/r=ω2r=(2π/T)2r

4.向心力F=mV2/r=mω2r=mr(2π/T)2=mωv=F合

5.周期与频率:T=1/f

6.角速度与线速度的关系:V=ωr

7.角速度与转速的关系ω=2πn(此处频率与转速意义相同)

8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。

注:

(1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心;

(2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,向心力不做功,但动量不断改变。

7平抛运动公式总结

1.水平方向速度:Vx=Vo

2.竖直方向速度:Vy=gt

3.水平方向位移:x=Vot

4.竖直方向位移:y=gt2/2

5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2,合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0

7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo

8.水平方向加速度:ax=0;竖直方向加速度:ay=g

注:

(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成;

(2)运动时间由下落高度h(y)决定与水平抛出速度无关;

(3)θ与β的关系为tgβ=2tgα;

(4)在平抛运动中时间t是解题关键;

(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。

8竖直上抛运动公式总结

1.位移s=Vot-gt2/2

2.末速度Vt=Vo-gt(g=9.8m/s2≈10m/s2)

3.推论Vt2-Vo2=-2gs

4.上升高度Hm=Vo2/2g(抛出点算起)

5.往返时间t=2Vo/g(从抛出落回原位置的时间)

注:

(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值;

(2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性;

(3)上升与下落过程具有对称性,如在同点速度等值反向等。

9自由落体运动公式总结

1.初速度Vo=0

2.末速度Vt=gt

3.下落高度h=gt2/2(从Vo位置向下计算)

4.推论Vt2=2gh

注:

(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;

(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。

10匀变速直线运动公式总结

1.平均速度V平=s/t(定义式)

2.有用推论Vt2-Vo2=2as

3.中间时刻速度Vt/2=V平=(Vt+Vo)/2

4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2

6.位移s=V平t=Vot+at2/2=Vt/2t

7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}

8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}

9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

注:

(1)平均速度是矢量;

(2)物体速度大,加速度不一定大;

(3)a=(Vt-Vo)/t只是量度式,不是决定式;

11有关摩擦力的知识总结

1、摩擦力定义:当一个物体在另一个物体的表面上相对运动(或有相对运动的趋势)时,受到的阻碍相对运动(或阻碍相对运动趋势)的力,叫摩擦力,可分为静摩擦力和滑动摩擦力。

2、摩擦力产生条件:①接触面粗糙;②相互接触的物体间有弹力;③接触面间有相对运动(或相对运动趋势)。

说明:三个条件缺一不可,特别要注意“相对”的理解。

3、摩擦力的方向:

①静摩擦力的方向总跟接触面相切,并与相对运动趋势方向相反。

②滑动摩擦力的方向总跟接触面相切,并与相对运动方向相反。

说明:(1)“与相对运动方向相反”不能等同于“与运动方向相反”。

滑动摩擦力方向可能与运动方向相同,可能与运动方向相反,可能 与运动方向成一夹角。

(2)滑动摩擦力可能起动力作用,也可能起阻力作用。

4、摩擦力的大小:

(1)静摩擦力的大小:

①与相对运动趋势的强弱有关,趋势越强,静摩擦力越大,但不能超过静摩擦力,即0≤f≤fm 但跟接触面相互挤压力FN无直接关系。具体大小可由物体的运动状态结合动力学规律求解。

②静摩擦力略大于滑动摩擦力,在中学阶段讨论问题时,如无特殊说明,可认为它们数值相等。

③效果:阻碍物体的相对运动趋势,但不一定阻碍物体的运动,可以是动力,也可以是阻力。

(2)滑动摩擦力的大小:

滑动摩擦力跟压力成正比,也就是跟一个物体对另一个物体表面的垂直作用力成正比。

公式:F=μFN (F表示滑动摩擦力大小,FN表示正压力的大小,μ叫动摩擦因数)。

说明:①FN表示两物体表面间的压力,性质上属于弹力,不是重力,更多的情况需结合运动情况与平衡条件加以确定。

②μ与接触面的材料、接触面的情况有关,无单位。

③滑动摩擦力大小,与相对运动的速度大小无关。

5、摩擦力的效果:总是阻碍物体间的相对运动(或相对运动趋势),但并不总是阻碍物体的运动,可能是动力,也可能是阻力。

说明:滑动摩擦力的大小与接触面的大小、物体运动的速度和加速度无关,只由动摩擦因数和正压力两个因素决定,而动摩擦因数由两接触面材料的性质和粗糙程度有关。

12能量守恒定律公式总结

1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米

2.油膜法测分子直径d=V/s{V:单分子油膜的体积(m3),S:油膜表面积(m)2}

3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。

4.分子间的引力和斥力(1)r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0

5.热力学第一定律W+Q=ΔU{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q:物体吸收的热量(J),ΔU:增加的内能(J),涉及到第一类永动机不可造出〔见第二册P40〕}

6.热力学第二定律

克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性);

开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出

7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)}

注:

(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;

(2)温度是分子平均动能的标志;

(3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;

(4)分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;

(5)气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU>0;吸收热量,Q>0

(6)物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;

(7)r0为分子处于平衡状态时,分子间的距离;

81770