高分网 > 高中学习方法 > 高二学习方法 > 高二数学 >

《导数及其应用》课后习题和答案

时间: 欣欣2 高二数学

  导数是微积分中的重要基础概念。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。导数实质上就是一个求极限的过程,导数的四则运算法则来源于极限的四则运算法则。以下是小编为大家整理有关高二的数学导数及其应用习题和答案分析,欢迎大家参阅!

  《导数及其应用》课后习题

  一、填空题

  1.当自变量从x0变到x1时,函数值的增量与相应自变量的增量之比是函数________.(填序号)

  ①在[x0,x1]上的平均变化率;

  ②在x0处的变化率;

  ③在x1处的变化率;

  ④以上都不对.

  2.设函数y=f(x),当自变量x由x0改变到x0+Δx时,函数的增量Δy=______________.

  3.已知函数f(x)=2x2-1的图象上一点(1,1)及邻近一点(1+Δx,f(1+Δx)),则ΔyΔx=________.

  4.某物体做运动规律是s=s(t),则该物体在t到t+Δt这段时间内的平均速度是______________.

  5.如图,函数y=f(x)在A,B两点间的平均变化率是________.

  6.已知函数y=f(x)=x2+1,在x=2,Δx=0.1时,Δy的值为________.

  7.过曲线y=2x上两点(0,1),(1,2)的割线的斜率为______.

  8.若一质点M按规律s(t)=8+t2运动,则该质点在一小段时间[2,2.1]内相应的平均速度是________.

  二、解答题

  9.已知函数f(x)=x2-2x,分别计算函数在区间[-3,-1],[2,4]上的平均变化率.

  10.过曲线y=f(x)=x3上两点P(1,1)和Q(1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率.

  能力提升

  11.

  甲、乙二人跑步路程与时间关系如右图所示,试问甲、乙二人哪一个跑得快?

  12.函数f(x)=x2+2x在[0,a]上的平均变化率是函数g(x)=2x-3在[2,3]上的平均变化率的2倍,求a的值.

  1.做直线运动的物体,它的运动规律可以用函数s=s(t)描述,设Δt为时间改变量,在t0+Δt这段时间内,物体的位移(即位置)改变量是Δs=s(t0+Δt)-s(t0),那么位移改变量Δs与时间改变量Δt的比就是这段时间内物体的平均速度v,即v=ΔsΔt=s(t0+Δt)-s(t0)Δt.

  2.求函数f(x)的平均变化率的步骤:

  (1)求函数值的增量Δy=f(x2)-f(x1);(2)计算平均变化率ΔyΔx=f(x2)-f(x1)x2-x1.

  《导数及其应用》课后习题答案

  1.①

  2.f(x0+Δx)-f(x0)

  3.4+2Δx

  解析 Δy=f(1+Δx)-f(1)=2(1+Δx)2-1-2×12+1=4Δx+2(Δx)2,

  ∴ΔyΔx=4Δx+2(Δx)2Δx=4+2Δx.

  4.s(t+Δt)-s(t)Δt

  解析 由平均速度的定义可知,物体在t到t+Δt这段时间内的平均速度是其位移改变量与时间改变量的比.

  所以v=ΔsΔt=s(t+Δt)-s(t)Δt.

  5.-1

  解析 ΔyΔx=f(3)-f(1)3-1=1-32=-1.

  6.0.41

  7.1

  解析 由平均变化率的几何意义知k=2-11-0=1.

  8.4.1

  解析 质点在区间[2,2.1]内的平均速度可由ΔsΔt求得,即v=ΔsΔt=s(2.1)-s(2)0.1=4.1.

  9.解 函数f(x)在[-3,-1]上的平均变化率为:

  f(-1)-f(-3)(-1)-(-3)

  =[(-1)2-2×(-1)]-[(-3)2-2×(-3)]2=-6.

  函数f(x)在[2,4]上的平均变化率为:

  f(4)-f(2)4-2=(42-2×4)-(22-2×2)2=4.

  10.解 ∵Δy=f(1+Δx)-f(1)=(1+Δx)3-1

  =3Δx+3(Δx)2+(Δx)3,

  ∴割线PQ的斜率

  ΔyΔx=(Δx)3+3(Δx)2+3ΔxΔx=(Δx)2+3Δx+3.

  当Δx=0.1时,割线PQ的斜率为k,

  则k=ΔyΔx=(0.1)2+3×0.1+3=3.31.

  ∴当Δx=0.1时割线的斜率为3.31.

  11.解 乙跑的快.因为在相同的时间内,甲跑的路程小于乙跑的路程,即甲的平均速度比乙的平均速度小.

  12.解 函数f(x)在[0,a]上的平均变化率为

  f(a)-f(0)a-0=a2+2aa=a+2.

  函数g(x)在[2,3]上的平均变化率为

  g(3)-g(2)3-2=(2×3-3)-(2×2-3)1=2.

  ∵a+2=2×2,∴a=2.

20015