高分网 > 高考 > 高考辅导 >

生物备考高考高分必备知识点整理

时间: 小龙 高考辅导

生物备考高考高分必备知识点整理篇1

1生物的基本特征:自我更新、自我复制、自我调节

1.1细胞是生物体结构和功能的基本单位

1.2代谢是生物体进行一切生命活动的基础

1.2.1包括物质转变(合成与分解)、能量转换(储存与释放)和信息传递

1.2.2在代谢基础上,生物表现出应激性,生长、发育和生殖,遗传和变异等特性。

1.3生命是生物与环境相互作用的产物

2生命的物质基础

2.1以C、H、O、N、P、S为主的几十种化学元素

生命的物质性;化学成分的同一性;生物界与非生物界的统一性

2.2以蛋白质、核酸和脂类为主要成分的各种化合物

2.2.1水——生命源于水,也依赖于水

水在细胞中的两种存在方式及其功能;结合水和自由水的含量比与细胞代谢的关系

2.2.2无机盐

无机盐离子与代谢的关系(组成成分和调节作用)

2.2.3糖类——生物体进行生命活动的主要能源物质

淀粉、糖元—→C6H12O6—→CO2+H2O+能量

核糖、脱氧核糖以及纤维素的重要作用

2.2.4脂类

脂肪和糖类的氧化供能特点

磷脂与细胞各种膜结构的关系

2.2.5一切生命活动都离不开蛋白质

蛋白质的化学组成:氨基酸——→多肽链——→蛋白质

蛋白质的多种生物学功能:组织蛋白、酶蛋白、运输蛋白、激素蛋白、抗体蛋白等

2.2.6核酸是一切生物的遗传物质

核苷酸——→多核苷酸链——→核酸(DNA和RNA)

3生命的基本单位——细胞

3.1真核细胞主要的亚显微结构和功能

实验研究法:分级离心法(细胞匀浆的制备和超速离心技术)

固定观察法、活体观察法、离体培养法等等

3.1.1细胞膜——物质交换的门户

以细胞膜为代表的各种膜结构的特点

证明膜具流动性的实验:人鼠细胞的融合实验

膜的选择透过性——物质通过膜的主要方式

跨膜运输(自由扩散、主动运输);非跨膜运输(内吞作用、外排作用)

3.1.2细胞质——代谢的中心

参与能量转换的两种细胞器:线粒体和叶绿体

与主要功能相适应的膜结构特点

在不同细胞内的分布与细胞的代谢强度之关系

与分泌蛋白合成和分泌有关的膜结构:核糖体、内质网、高尔基体、细胞膜;线粒体

具膜性结构的细胞器和非膜性结构的细胞器

3.1.3细胞核——遗传的中心

核膜的结构特点(双层膜和核孔)与功能

染色体的主要化学成分及形态变化的遗传学意义

3.1.4一个细胞就是一个完整统一的有机整体:证明细胞核和细胞质关系的实验

3.2真核细胞和原核细胞的比较

有无核膜;有无具膜结构的细胞器;基因结构中的编码区是否含有非编码序列

3.3细胞的生物膜系统

各种生物膜在化学组成上的同一性和结构上的一定连续性

各种生物膜在功能上明确分工,而更重要的是紧密联系

生物膜系统的概念及研究意义

4细胞的增殖、分化、癌变和衰老

4.1体细胞进行有丝分裂的周期性——细胞周期

4.1.1分裂间期的特点:DNA分子的复制

4.1.2分裂期各时期的主要特点(以含有两对染色体的高等植物细胞为例)

4.1.3动、植物细胞有丝分裂之比较

4.1.4细胞有丝分裂图象的变式认识——二维坐标图

4.2细胞的分化、癌变(畸形分化)和衰老

5细胞工程

5.1细胞的全能性

5.2植物细胞工程的基本技术——植物组织培养

植物体细胞的杂交

5.3动物细胞工程的基本技术

动物细胞的培养(原代培养和传代培养、细胞株和细胞系)

动物细胞的融合

单克隆抗体的制备:杂交瘤细胞的获得—培养—免疫分析、筛选—再培养—提取

第二单元代谢——生物最基本的特征

1酶与代谢之关系

1.1酶的发现及化学属性:蛋白酶与非蛋白酶(如RNA酶)

1.3酶的性质及实验研究

高效性、专一性及需要适宜的条件

1.3.1证明酶催化效率高低的几个实验:

1.3.2用曲线图分析影响酶活性的各种因素:(温度、pH、酶的浓度、反应物浓度)

2生物所需能量的直接来源——ATP

2.1 ATP等高能磷酸化合物的知识在课本中的分布

2.2 ATP的结构特点与能量变化之关系:

2.3 ATP的形成途径及形成场所

3植物对水分的吸收和利用

3.1渗透作用的原理;渗透作用的产生必须具备的条件

3.2证明植物细胞吸水和失水的实验——观察植物细胞的质壁分离与复原

植物细胞质壁分离与复原现象的发生原因:(内因与外因)

植物细胞质壁分离与复原的实验研究还可用于:判断植物细胞的死活;推测细胞液的浓度

3.3水分的运输、利用和散失与合理灌溉

4植物的矿质营养

4.1植物必需的矿质元素(14种)

4.2根对矿质元素的吸收:(熟悉原理,讨论问题)

4.3矿质元素的运输和利用特点

4.4合理施肥与无土栽培

4.5矿质元素的吸收与呼吸作用、水分代谢、光合作用的关系

5光合作用(碳素同化作用)

5.1光合作用的发现及实验研究:萨克斯实验、恩吉尔曼实验、同位素示踪法的应用

5.2熟识光合作用全过程的图解

光反应和暗反应两个阶段的进行部位、物质转变和能量转换的特点

C3植物和C4植物的概念及叶片结构特点之比较

5.3影响光合作用的主要因素(曲线图分析):光照强度、二氧化碳浓度和环境温度

5.4光合作用、呼吸作用和蒸腾作用原理在生产实践上的应用:(问题讨论与习题解析)

6人和动物体内糖类、脂类和蛋白质的代谢

6.1糖代谢:以“血糖浓度相对稳定的维持”为中心,理出“血糖的三个来源和三个去路”

6.2脂类代谢:脂肪在人和动物体内的变化

6.3蛋白质代谢:“组织蛋白质的形成所需氨基酸的来源”;“氨基转换作用和脱氨基作用”

6.4三大营养物质代谢的关系:在一定的条件下可相互转化,又相互制约

6.5三大营养物质代谢与人体健康的关系:

合理膳食的重要性:糖的足量;脂肪的适量和磷脂的补充;蛋白质的定量,等等。

生物备考高考高分必备知识点整理篇2

对细胞中的元素和化合物认识不到位

1. 组成生物体的基本元素是C,主要元素是C、H、O、N、S、P, 含量较多的元素主要是C、H、O、N。细胞鲜重最多的元素是O, 其次是C、H、N,而在干重中含量最多的元素是C,其次是O、N、H。

2. 元素的重要作用之一是组成多种多样的化合物:S是蛋白质的组成元素之一,Mg是叶绿素的组成元素之一,Fe是血红蛋白的组成元素之一,N、P是构成DNA、RNA、ATP、[H](NADPH)等物质的重要元素等。

3. 许多元素能够影响生物体的生命活动:如果植物缺少B元素,植物的花粉的萌发和花粉管的伸长就不能正常进行,植物就会“华而不实”;人体缺I元素,不能正常合成甲状腺激素,易患“大脖子病”;哺乳动物血钙过低或过高,或机体出现抽搐或肌无力等现象。

不能熟练掌握蛋白质的结构、功能

有关蛋白质或氨基酸方面的计算类型比较多,掌握蛋白质分子结构和一些规律性东西是快速准确计算的关键,

具体归纳如下:

①肽键数=失去的水分子数

②若蛋白质是一条链,则有:肽键数(失水数)=氨基酸数-1

③若蛋白质是由多条链组成则有:肽键数(失水数)=氨基酸数-肽链数

④若蛋白质是一个环状结构,则有:肽键数=失水数=氨基酸数

⑤蛋白质相对分子质量=氨基酸相对分子质量总和-失去水的相对分子质量总和(有时也要考虑因其他化学键的形成而导致相对分子质量的减少,如形成二硫键时)。

⑥蛋白质至少含有的氨基和羧基数=肽链数

⑦基因的表达过程中,DNA中的碱基数:RNA中的碱基数:蛋白质中的氨基酸数=6:3:1。

对细胞周期概念的实质理解不清楚

一个细胞周期包括间期和分裂期,间期在前,分裂期在后;二是不理解图中不同线段长短或扇形图面积大小所隐含的生物学含义。线段长与短、扇形图面积大小分别表示细胞分裂周期中的间期和分裂期,间期主要完成DNA复制和有关蛋白质的合成,该时期没有染色体出现,分裂期主要完成遗传物质的均分。

理解细胞周期概念时应明确三点:

①只有连续分裂的细胞才具有周期性;

②分清细胞周期的起点和终点;

③理解细胞周期中的分裂间期与分裂期之间的关系,特别是各期在时间、数量等方面的关联性。

其生物学模型主要有以下四方面:线段描述、表格数据描述、坐标图描述、圆形图描述等。

说明:选择观察细胞周期的材料时最好分裂期较长且整个细胞周期较短的物种。因为各时期的持续时间长短与显微镜视野中相应时期的细胞数目成正相关,所以是分裂期相对越长的细胞,越容易观察各期的染色体行为的变化规律。

计算DNA结构中的碱基问题时易出错

碱基互补配对原则是核酸中碱基数量计算的基础。根据该原则,可推知以下多条用于碱基计算的规律。

1. 在双链DNA分子中,互补碱基两两相等,即A=T,C=G;且A+G=C+T,即嘌呤碱基总数等于嘧啶碱基总数。

2. 在双链DNA分子中,互补的两碱基之和(如A+T或C+G)占全部碱基的比等于其任何一条单链中该种碱基比例的比值,且等于其转录形成的mRNA中该种比例的比值。

3. DNA分子一条链中(A+G)/(C+T)的比值的倒数等于其互补链中该种碱基的比值。

4. DNA分子一条链中(A+T)/(C+G)的比值等于其互补链和整个DNA分子中该种比例的比值。

5. 不同生物的DNA分子中其互补配对的碱基之和的比值不同,即(A+T)/(C+G)的值不同。

对性别决定认识不清

性别是由遗传物质的载体——染色体和环境条件共同作用的结果,必须考虑多方面因素的影响,其中以性染色体决定性别为主要方式。雄性体细胞中有异型的性染色体XY,雌性体细胞中有同型的性染色体。

对大多数生物来说,性别是由一对性染色体所决定的,性染色体主要有两种类型,即XY型和ZW型。由X、Y两类性染色体不同的组合形式来决定性别的生物,称XY型性别决定的生物,XY型的生物雌性个体的性染色体用表示,雄性个体的性染色体则用XY表示。由Z、W两类性染色体不同的组合形式来决定性别的生物,称ZW型性别决定的生物,ZW型的生物雌性个体的性染色体组成为ZW,而雄性个体的性染色体则用ZZ表示。

对基因突变与性状的关系模糊不清

亲代DNA上某碱基对发生改变,则其子代的性状不一定发生改变,

原因是:

①体细胞中某基因发生改变,生殖细胞中不一定出现该基因;

②若该亲代DNA上某个碱基对发生改变产生的是一个隐性基因,并将该隐性基因传给子代,而子代为杂合子,则隐性性状不会表现出来;

③根据密码子的简并性,有可能翻译出相同的氨基酸;

④性状表现是遗传基因和环境因素共同作用的结果,在某些环境条件下,改变了的基因可能并不会在性状上表现出来等。

不能准确判断生物的显性和隐性性状

1. 据子代性状判断:

①不同性状亲代杂交→后代只出现一种性状→该性状为显性性状→具有这一性状的亲本为显性纯合子;

②相同性状亲本杂交→后代出现不同于的亲本性状→该性状为隐性性状→亲本都为杂合子。

2. 据子代性状分离比判断:

①具一对相对性状的亲本杂交→子代性状分离比为3:1→分离比为3的性状为显性性状;

②具两对相对性状的亲本杂交→子代性状分离比为9:3:3:1→分离比为9的两性状都为显性。

3. 遗传系谱图中显、隐性判断:

①双亲正常→子代患病→隐性遗传病;

②双亲患病→子代正常→显性遗传病。

4. 若用以上方法无法判断时,可用假设法。在运用假设法判断显隐性性状时,若出现假设与事实相符的情况时,要注意两种性状同时做假设或对同一性状做两种假设,切不可只根据一种假设得出片面的结论。但若假设与事实不相符时,则不必再做另一假设,可予以直接判断。

将生长素分布多少与浓度高低混为一谈

易错分析:一是不能正确分析水平放置的生长幼苗在植株不同部位生长素分布情况,由于重力作用,生长素在下部(近地侧)比上部(远地侧)的分布多。

对于植株的茎来说,这个生长素浓度属于低浓度,能促进生长,因而下面的生长较快,植株的茎就向上弯曲生长。同样的生长素浓度,对于植株的根来说,属于高浓度,会抑制生长,因而,根部下面的生长比上面的慢,根就向下弯曲生长。

二是将生长素浓度高低与多少混为一谈,认为多就是浓度高。要注意不同部位生长素分布多少与生长素浓度高低具有不同的含义,前者通常用于说明生长素的分布情况,后者通常用于说明生长素的生理作用情况。

1. ①单侧光:单侧光照射影响生长素的运输,产生植物向光性。向光性产生的内部因素是生长素分布不均,外部因素是单侧光的照射。

②地心引力(重力)→茎的背重力性,根的向重力性。生长素在植物体内的运输,主要从植物体形态学上端向下端运输。把植物体横放时受到地心引力作用,引起生长素分布不均匀,由于根、茎对生长素敏感程度不同,而产生根的向重力性、茎的背重力性。

2. 运用生长素的两重性来解释植物的生长现象时,应首先注意相同浓度的生长素处理的是植物的哪个部位(根、茎、叶、果实等),从而判断对其生长是促进还是抑制。

3. 生长素作用两重性的体现——顶端优势。

①原因:顶芽合成的生长素向下运输,使顶芽处生长素浓度低,促进生长;侧芽处生长素浓度高,抑制生长。

②应用:果树的剪枝、茶树摘心、棉花打顶等都能增加分枝,提高产量。

4. 除顶端优势外的生长素两重性的实例:

a.根的向重力生长,其中根的近地侧生长素浓度过高抑制根生长,而远地侧生长素浓度低,促进根的生长,表现出向重力性。

b.除草剂,其中2,4-D就是利用双子叶植物适应浓度较低,而单子叶植物适应浓度较高而制成的,故可在单子叶作物中除去双子叶杂草。

对人体内环境的概念与组成成分理解不深入

易错分析:不知道内环境的组成成分是导致错误的根本原因。

? 辨别某种物质是否属于内环境的组成成分时,首先分清它是否为液体环境中的物质,其次要看这种物质是否存在于细胞外液,如血红蛋白、呼吸氧化酶所处的液体环境,不属于细胞外液,而是细胞内液,因而血红蛋白、呼吸氧化酶不属于内环境的成分。

? 要清楚内环境中各种不同的成分。

①血浆的成分:水,约90%;蛋白质,约7%~9%;无机盐,约1%;血液运送的各种营养物质,如脂质、氨基酸、维生素、葡萄糖、核苷酸等;血液运送的各种代谢废物,如尿素、尿酸、氨等;血液运送的气体、激素等,如O2、CO2、胰岛素等。

②组织液、淋巴的成分与血浆相近,但又不完全相同,最主要的差别在于血浆中含有较多的蛋白质,而组织液和淋巴中蛋白质含量很少。

对染色体、DNA、基因、脱氧核苷酸、mRNA之间的关系模糊

基因是染色体上具有遗传效应的DNA片段,是控制生物性状的遗传物质的功能和结构单位。

每条染色体通常只有一个DNA分子,染色体是DNA的主要载体;每个DNA分子上有许多个基因,每个基因中可以含有成百上千个脱氧核苷酸;染色体是基因的载体,基因在染色体上呈线性排列。遗传信息存在于基因中,是指基因中脱氧核苷酸的排列顺序;遗传密码位于mRNA上,是指mRNA上决定一个氨基酸的三个相邻的碱基。遗传信息间接决定氨基酸的排列顺序,密码子直接控制蛋白质中氨基酸的排列顺序。

123949