高考数学知识点及公式大全
全国卷高考数学满分150分,属于很重要的一门科目,那么高考数学知识点及公式有哪些呢?以下是小编整理的一些关于高考数学知识点及公式,仅供参考。
高考数学复习重点
第一,函数与导数
主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用
这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用
这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式
主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。
第五,概率和统计
这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析
主要是证明平行或垂直,求角和距离。主要考察对定理的熟悉程度、运用程度。
第七,解析几何
高考的难点,运算量大,一般含参数。
高考常用数学公式
两角和公式
1、sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa。
2、cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb。
3、tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)。
4、ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)。
倍角公式
1、tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga。
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
半角公式
1、sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)。
2、cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)。
3、tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))。
4、ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))。
和差化积
1、2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)。
2、2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)。
3、sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)。
4、tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb。
5、ctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb。
等差数列
1、等差数列的通项公式为:
an=a1+(n-1)d(1)。
2、前n项和公式为:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)。
从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。
且任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
3、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}。
若m,n,p,q∈N_且m+n=p+q,则有
am+an=ap+aq。
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1。
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
和=(首项+末项)_数÷2。
项数=(末项-首项)÷公差+1。
首项=2和÷项数-末项。
末项=2和÷项数-首项。
项数=(末项-首项)/公差+1。
等比数列
1、等比数列的通项公式是:An=A1_^(n-1)。
2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)。
且任意两项am,an的关系为an=am·q^(n-m)。
3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}。
4、若m,n,p,q∈N_则有:ap·aq=am·an,等比中项:aq·ap=2ar ar则为ap,aq等比中项。
记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1。
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
性质:①若m、n、p、q∈N,且m+n=p+q,则am·an=ap_q;
②在等比数列中,依次每k项之和仍成等比数列。
“G是a、b的等比中项”“G^2=ab(G≠0)”。
在等比数列中,首项A1与公比q都不为零。
抛物线
1、抛物线:y=ax_bx+c就是y等于ax的平方加上bx再加上c。
a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)_k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。
4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2p_^2=2pyx^2=-2py。
高考数学答题技巧方法
1、高考数学答题带着量角器进考场
带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,大题角度是个很重要的结论,如果你实在不会,也可以写出最后结论。
2、高考数学答题立体几何
立体几何中,求二面角B-OA-C的新方法。利用三面角余弦定理。设二面角B-OA-C是∠OA,∠AOB是α,∠BOC是β,∠AOC是γ,这个定理就是:cos∠OA=(cosβ-cosαcosγ)/sinαsinγ。知道这个定理,如果考试中遇到立体几何求二面角的题,套一下公式就出来了。
3、高考数学答题取特殊值法
圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就ok了。
4、高考数学答题空间几何
空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!
5、高考数学答题图像法
超越函数的导数选择题,可以用满足条件常函数代替,不行用一次函数。如果条件过多,用图像法秒杀。不等式也是特值法图像法。