高分网 > 高考 > 高考辅导 >

初三反比例函数知识点

时间: 如英2 高考辅导

  我们学习初三数学,在遇见反比例函数的时候,清晰地大脑总会像是被搅得像浆糊一样。长长的反函数表达式代表的含义总不能理解。初三数学反比例函数也只是函数知识的冰山一角。那么反比例函数该怎样的学习呢?今天学习啦小编就与大家分享:初三反比例函数知识点,希望对大家的学习有帮助!

  初三反比例函数知识点一

  形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。

  反比例函数表达式

  x是自变量,y是x的函数

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1) (即:y等于x的负一次方,此处x必须为一次方)

  y=k/x(k为常数且k≠0,x≠0)

  若y=k/nx此时比例系数为:k/n

  自变量的取值范围  ① 在一般的情况下 , 自变量 x 的取值范围可以是 不等于0的任意实数;②函数 y 的取值范围也是任意非零实数。

  解析式 y=k/x 其中x是自变量,y是x的函数,其定义域是不等于0的一切实数,即 {x|x≠0,x∈R}。下面是一些常见的形式:

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1)

  y=k\x(k为常数(k≠0),x不等于0)

  反比例函数图象

  反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),

  知识拓展:反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。

  初三反比例函数知识点二

  反比例函数的概念

  一般地,如果两个变量x、y之间的关系可以表示成y=k/x或y=kx-1(k为常数,k≠0)的形式,那么称y是x的反比例函数。反比例函数的概念需注意以下几点:

  (1)k是常数,且k不为零;

  (2)k/x中分母x的指数为1,如y=kx-2不是反比例函数。

  (3)自变量x的取值范围是x≠0一切实数.

  (4)自变量y的取值范围是y≠0一切实数。

  初三反比例函数知识点三

  一、反比例函数的表达式

  X是自变量,Y是X的函数

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1)(即:y等于x的负一次方,此处X必须为一次方)

  y=k\x(k为常数且k≠0,x≠0)若y=k/nx此时比例系数为:k/n

  二、函数式中自变量取值的范围

  ①k≠0;②在一般的情况下,自变量x的取值范围可以是不等于0的任意实数;③函数y的取值范围也是任意非零实数。

  解析式y=k/x其中X是自变量,Y是X的函数,其定义域是不等于0的一切实数

  y=k/x=k·1/x

  xy=k

  y=k·x^(-1)

  y=k\x(k为常数(k≠0),x不等于0)

  三、反比例函数图象

  反比例函数的图像属于以原点为对称中心的中心对称的双曲线(hyperbola),

  反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

  四、反比例函数中k的几何意义是什么?有哪些应用?

  过反比例函数y=k/x(k≠0),图像上一点P(x,y),作两坐标轴的垂线,两垂足、原点、P点组成一个矩形,矩形的面积S=x的绝对值*y的绝对值=(x*y)的绝对值=|k|

  研究函数问题要透视函数的本质特征。反比例函数中,比例系数k有一个很重要的几何意义,那就是:过反比例函数图象上任一点P作x轴、y轴的垂线PM、PN,垂足为M、N则矩形PMON的面积S=PM·PN=|y|·|x|=|xy|=|k|。

  所以,对双曲线上任意一点作x轴、y轴的垂线,它们与x轴、y轴所围成的矩形面积为常数。从而有k的绝对值。在解有关反比例函数的问题时,若能灵活运用反比例函数中k的几何意义,会给解题带来很多方便。

  五、反比例函数性质有哪些?

  1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

  2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。定义域为x≠0;值域为y≠0。

  3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

  4.在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|

  5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

  6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么AB两点关于原点对称。

  7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n^2+4k·m≥(不小于)0。

  8.反比例函数y=k/x的渐近线:x轴与y轴。

  9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.

  10.反比例上一点m向x、y分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

  11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

  12.|k|越大,反比例函数的图象离坐标轴的距离越远。

  13.反比例函数图象是中心对称图形,对称中心是原点

27217