浙江2024年高考新课标数学试题及答案
浙江2024年高考新课标数学试题及答案已经出炉了,既然这样,那么你知道2024年浙江高考考生数学科目考了什么吗?下面小编给大家带来浙江2024年高考新课标数学试题及答案,供大家参考!
浙江2024年高考新课标数学试题及答案
提高高考数学成绩的技巧
答数学题时一些高考考生不能正确解答问题,往往都是审题不仔细,匆匆忙忙看完题目,在题目条件没有吃透情况下就匆匆下笔解题,自然无法正确解决问题。
解数学题,第一步就是要认真审题,提高对审题的重视,戒掉急于下笔的毛病,吃透题目当中每一个条件和结论,这样才能发现题目中的隐含条件,找到解题思路,降低因审题不仔细造成的解题出错。
永远记住,适当慢一点,高考生要学会耐心仔细去审数学题,准确地把握题目中的关键词与“量”,从题目中挖掘尽可能多的信息,才能找到正确解题方向。
高考数学填空题答题技巧
1、三角变换与三角函数的性质问题
解题方法:①不同角化同角;②降幂扩角 ;③化f(x)=Asin(ωx+φ)+h ;④结合性质求解。
答题步骤:
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
2、解三角形问题
解题方法:
(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
答题步骤:
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
3、数列的通项、求和问题
解题方法:①先求某一项,或者找到数列的关系式;②求通项公式;③求数列和通式。
答题步骤:
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
4、离散型随机变量的均值与方差
解题思路:
(1)①标记事件;②对事件分解;③计算概率。
(2)①确定ξ取值;②计算概率;③得分布列;④求数学期望。
答题步骤:
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的事件。
③定型:确定事件的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方差公式求解其值。
5、圆锥曲线中的范围问题
解题思路;①设方程;②解系数;③得结论。
答题步骤:
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
6、解析几何中的探索性问题
解题思路:①一般先假设这种情况成立(点存在、直线存在、位置关系存在等);②将上面的假设代入已知条件求解;③得出结论。
答题步骤:
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。