高考数学答题时间分配
我们要办选择题和填空题控制在2-3分钟,不要在选择题上耽误太多的时间,在答大题的时候我们尽量控制在8-10分钟,我们必须秉持着这个答题的原则,这样我们在答题的时候才能更加的顺畅,也能给自己的留出更多的时间去检查,有些题目较难的话,我们还可以有时间去思考。
其实高考的数学和我们平时大的试卷难易程度是差不多的,我们平时在训练的时候一定要坚持这个答题的原则,有的时候数学大题很多的同学是答不上来的,但是我们也不能轻言放弃,我们要知道,有些大题的第一小问我们是可以答上的,老师在给我们分数的时候,也会相应的给一点,所以我们在答题的时候,一定要把整张试卷的考试题阅读一下,不要说在平时训练的时候大题答不上就放弃,有可能在高考中的这道题 我们就能答上。考生要知道多得一分是一分,高考生一定要有这个意识。
选择题和填空题
用40分钟左右完成选择填空的内容,做选择题和填空题时,每道题的答题时间平均为3分钟左右,前面容易的题争取1分钟内出答案。因为基本没有时间回头检查,要力求将试题一次搞定。
大题解答题
做大题时,基础题型每道题的答题时间平均为10分钟左右。基础不同的学生对试题难易的感受不一样,基础扎实的学生如果在前面答题比较顺利,时间充裕,可以冲击最后几道大题。
对文科生来说,三角函数、数列、概率、立体几何尽量在较短时间内完成,每道题在10分钟内完成,圆锥曲线、函数与导数难度可能较大,每道题分配20分钟完成;
对理科生来说,三角函数、数列、概率、立体几何每道题分配10分钟时间完成,圆锥曲线、函数与导数每道题分配20分钟完成。
高考数学蒙题技巧超准
1、圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就ok了。
2、高考数学必考题型之空间几何,证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的考生建议先随便建立个空间坐标系,如果做错了,至少还可以得几分,这是一个投机取巧的技巧,但好比过一分不得!
3、空间几何过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!
4、立体几何中,求二面角b-oa-c的新方法。利用三面角余弦定理。设二面角b-oa-c是∠oa,∠aob是α,∠boc是β,∠aoc是γ,这个定理就是:cos∠oa=(cosβ-cosαcosγ)/sinαsinγ。知道这个定理,如果考试中遇到立体几何求二面角的题,套一下公式就出来了,还来得及,试试?
数学选择题蒙题技巧
1.选择与填空中出现不等式的题目,优选特殊值法,选取中间值带入,选取好算易得的;
2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法,将各种函数模型牢记于心,每个模型特点也要牢记;
3.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”,函数的零点就是方程的根。
4.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如恒过的定点,二次函数的对称轴,三角函数的周期等;
5.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
6.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,采取分离常数,最终变为恒成立问题,求最值;
7.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
8.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;