高一数学集合大小定义的基本要求
作为集合大小的定义,应该满足什么样的基本要求?我们当然要尽可能地使它符合一般的关于“大小”的常识和直觉,其中有许多是要比“整体大于部分”更加要紧的。
首先,一个集合的大小只应该取决于这个集合本身。
我们知道一个集合可以用多种方法来构造和表示,比如说,
A={小于等于2的正整数}
B={1, 2}
C={x2-3x+2=0的根}
其实都是同一个集合,
D={n | n为自然数,且方程xn+yn=zn有xyz≠0的整数解}
又怎么样呢?1996年英国数学家怀尔斯证明了费尔马大定理,所以集合D和上面的集合A、B、C是同一个集合,它里面有两个元素1和2。我们记得,一个集合由它所含的元素唯一决定,所以它的大小也不能取决于它被表示的方法,或者被构造的途径,它只应该取决于它本身。
一个集合得和自己一样大,这个没有什么好说的;
其次,如果集合A不小于(也就是说或者大于,或者一样大)集合B,而集合B也不小于集合A,那么它们就必须是一样大的;
第三,如果集合A不小于集合B,而集合B又不小于集合C,那么集合A就必须不小于集合C。在数学上,我们称满足这三个条件的关系为“偏序关系”(注:严格地说,这个偏序关系并不定义在集合之间,而是定义在集合按“一样大”这个等价关系定义出的等价类之间,关于偏序关系的严格定义的叙述和上面所说的也有区别,但这些问题在这里并不要紧,你如果看不懂这个注在讲什么也不要紧)。如果一个关于集合大小的定义违反了上面所说的三条之一,这个定义的怪异程度一定会超过上面使用一一对应原则的定义!
举个例子,比如说我对某位科幻小说作家的喜爱程度就是一个偏序关系。如果我喜欢阿西莫夫胜于喜欢凡尔纳,而喜欢凡尔纳又胜于喜欢克拉克,那在阿西莫夫和克拉克中,我一定更喜欢阿西莫夫。不过一个偏序关系并不要求任意两个对象都能相互比较。比如说刘慈欣的水平当然不能和克拉克这样的世界级科幻大师比,但是“喜欢”是一种很个人的事情,作为一个中国人,我对中国的科幻创作更感兴趣——所以似乎不能说我更喜欢克拉克,但也不能说我更喜欢刘慈欣,而且也不能说同样喜欢,因为喜欢的地方不一样——所以更确切地也许应该说,他们俩之间不能比较。但偏序关系中存在这样的可能性,有一个对象可以和两个不能相互比较的对象中的每一个相比较,比方说我喜欢阿西莫夫胜过刘慈欣和克拉克中的任一个。
不过作为集合大小的定义,我们希望能够比较任意两个集合的大小。所以,对于任何给定的两个集合A和B,或者A比B大,或者B比A大,或者一样大,这三种情况必须有一种正确而且只能有一种正确。这样的偏序关系被称为“全序关系”。
最后,新的定义必须保持原来有限集合间的大小关系。有限集合间的大小关系是很清楚的,所谓的“大”,也就是集合中的元素更多,有五个元素的集合要比有四个元素的集合大,在新的扩充了的集合定义中也必须如此。这个要求是理所当然的,否则我们没有理由将新的定义作为老定义的扩充。
“整体大于部分”原则的困难和一一对应原则的优点
满足上面几条要求的定义,最简单的就是认为无限就只有一种,所有的无限集合都一样大,而它们都大于有限集合。这其实是康托尔创立集合论以前数学家的看法,所以康托尔把无限分成许多类的革命性做法使得数学家们大吃了一惊。但是这样的定义未免太粗糙了一点,只不过是把“无限集合比有限集合大”换了种方法说罢了,我们看不出这有什么用处。没有用的定义不要也罢——再说在这种定义中,自然数和正偶数也一样多,因为所对应的集合都是无限集合。
如果我们在上面几条要求中,再加上“整体大于部分”这条要求会怎么样呢?
我们想像平面上有条射线,射线的一端是原点,然后在上面我们每隔一厘米画一个点,并在每个点旁边标上1、2、3……等,这样就有无穷个点。那么这个点集和自然数集合比较大小的结果应该如何?按照我们前面的要求,任何两个集合都应该可以比较大小的。我们很容易想像到,这其实是一条数轴的正半轴,上面的点就是代表自然数的那些点,所以这些点的个数应该和自然数的个数相同。而且,按照“整体大于部分”的规定,那些标有10、20、30……的点的集合比所有点的集合要小。但是“一厘米”实在是非常人为的规定,如果我们一开始就每隔一分米画一个点,顺着上面的思路,这些点的个数也该和自然数一样多,但是这恰好是按一厘米间隔画点时标有10、20、30……的点啊!那些点始终是一样的,所以它们的个数不应该取决于在它们的旁边标记的是“1、2、3……”还是“10、20、30……”。
再举一个例子。假设我给你一个大口袋,里面有无限多个小口袋,上面按照自然数标了号1、2、3……。在1号口袋中有1粒豆子,2号口袋中有2粒豆子,……依次类推。现在我当着你的面拿掉1号小口袋,那么剩下的小口袋数和原来的相比如何?如果按照“整体大于部分”的观点,应该是少了,少一条。但是如果我当初就背着你拿掉1号口袋,然后从其他每个小口袋中取出一粒豆子,再把小口袋上的号码改掉,2改成1,3改成2……,然后再把大口袋给你,你显然不会知道我做了手脚,因为这时大口袋里的东西和原来没有任何区别,所以小口袋的数量和原来一样多。这就和“少一条”矛盾了,从小口袋里拿一粒豆子或者是涂改上面的标号不应该改变口袋的数量。大家明白我是打了一个比方,大口袋就是一个集合。按照上面的要求,集合的大小只应该取决于集合本身,而不应该取决于集合的表示方法或构造方法,也就是得到集合的过程。你拿到了大口袋,也就是就应该知道里面小口袋的数量,而不用知道我是否做过手脚。
这样的例子可以举很多。我们发现,如果坚持“整体大于部分”的话,固然可以使得某些集合和自己的子集相比较时,比如比较自然数和正偶数的个数时,符合“直观”和“常识”。但是更多的非常直观的东西和常识却都会变成错误的。比如说,x'=x+1这样一个数轴上的坐标平移,会将坐标上的点集{1,2,3……}变为{2,3,4……},一个坐标平移居然可以变动点集中元素的个数!“元素可以一一对应的两个集合大小相同”这条原理的失效,会使得我们在比较两个元素很不相同的集合时无所适从:怎样不使用一一对应的方法来比较自然数和数轴上(0,1)区间中点的个数?