高分网 > 高中学习方法 > 高一学习方法 > 高一数学 >

高一数学函数知识点

时间: 泽璇 高一数学
高一数学函数知识点归纳

⑴ 若x处于分母位置,则分母x不能为0。

⑵ 偶次方根的被开方数不小于0。

⑶ 对数式的真数必须大于0。

⑷ 指数对数式的底,不得为1,且必须大于0。

⑸ 指数为0时,底数不得为0。

⑹ 如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。

⑺ 实际问题中的函数的定义域还要保证实际问题有意义。

3、相同函数

⑴ 表达式相同:与表示自变量和函数值的字母无关。

⑵ 定义域一致,对应法则一致。

4、函数值域的求法

⑴ 观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。

⑵ 图像法:适用于易于画出函数图像的函数已经分段函数。

⑶ 配方法:主要用于二次函数,配方成 y=(x-a)2+b 的形式。

⑷ 代换法:主要用于由已知值域的函数推测未知函数的值域。

5、函数图像的变换

⑴ 平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。

⑵ 伸缩变换:在x前加上系数。

⑶ 对称变换:高中阶段不作要求。

6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。

⑴ 集合A中的每一个元素,在集合B中都有象,并且象是唯一的。

⑵ 集合A中的不同元素,在集合B中对应的象可以是同一个。

⑶ 不要求集合B中的每一个元素在集合A中都有原象。

7、分段函数

⑴ 在定义域的不同部分上有不同的解析式表达式。

⑵ 各部分自变量和函数值的取值范围不同。

⑶ 分段函数的定义域是各段定义域的交集,值域是各段值域的并集。

8、复合函数:如果(u∈M),u=g(x) (x∈A),则,y=f[g(x)]=F(x) (x∈A),称为f、g的复合函数。

高一数学函数的性质

1、函数的局部性质——单调性

设函数y=f(x)的定义域为I,如果对应定义域I内的某个区间D内的任意两个变量x1、x2,当x1< x2时,都有f(x1)<f(x2),那么y=f(x)在区间d上是增函数,d是函数y=f(x)的单调递增区间;当x1< x2时,都有f(x1)="">f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。

⑴函数区间单调性的判断思路

ⅰ在给出区间内任取x1、x2,则x1、x2∈D,且x1< x2。

ⅱ 做差值f(x1)-f(x2),并进行变形和配方,变为易于判断正负的形式。

ⅲ判断变形后的表达式f(x1)-f(x2)的符号,指出单调性。

⑵复合函数的单调性

复合函数y=f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律为“同增异减”;多个函数的复合函数,根据原则“减偶则增,减奇则减”。

⑶注意事项

函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成并集,如果函数在区间A和B上都递增,则表示为f(x)的单调递增区间为A和B,不能表示为A∪B。

2、函数的整体性质——奇偶性

对于函数f(x)定义域内的任意一个x,都有f(x) =f(-x),则f(x)就为偶函数;

对于函数f(x)定义域内的任意一个x,都有f(x) =-f(x),则f(x)就为奇函数。

⑴奇函数和偶函数的性质

ⅰ无论函数是奇函数还是偶函数,只要函数具有奇偶性,该函数的定义域一定关于原点对称。

ⅱ奇函数的图像关于原点对称,偶函数的图像关于y轴对称。

⑵函数奇偶性判断思路

ⅰ先确定函数的定义域是否关于原点对称,若不关于原点对称,则为非奇非偶函数。

ⅱ确定f(x) 和f(-x)的关系:

若f(x) -f(-x)=0,或f(x) /f(-x)=1,则函数为偶函数;

若f(x)+f(-x)=0,或f(x)/ f(-x)=-1,则函数为奇函数。

3、函数的最值问题

⑴对于二次函数,利用配方法,将函数化为y=(x-a)2+b的形式,得出函数的最大值或最小值。

⑵对于易于画出函数图像的函数,画出图像,从图像中观察最值。

⑶关于二次函数在闭区间的最值问题

ⅰ判断二次函数的顶点是否在所求区间内,若在区间内,则接ⅱ,若不在区间内,则接ⅲ。

ⅱ 若二次函数的顶点在所求区间内,则在二次函数y=ax2+bx+c中,a>0时,顶点为最小值,a<0时顶点为最大值;后判断区间的两端点距离顶点的远近,离顶点远的端点的函数值,即为a>0时的最大值或a<0时的最小值。

ⅲ 若二次函数的顶点不在所求区间内,则判断函数在该区间的单调性

若函数在[a,b]上递增,则最小值为f(a),最大值为f(b);

若函数在[a,b]上递减,则最小值为f(b),最大值为f(a)。

高一数学基本初等函数

1、指数函数:函数y=ax (a>0且a≠1)叫做指数函数

a 的取值a>10<a<1
定义域x∈Rx∈R
值域y∈(0,+∞)y∈(0,+∞)
单调性全定义域单调递增全定义域单调递减
奇偶性非奇非偶函数非奇非偶函数
过定点(0,1)(0,1)

注意:⑴由函数的单调性可以看出,在闭区间[a,b]上,指数函数的最值为:

a>1时,最小值f(a),最大值f(b);0<a<1时,最小值f(b),最大值f(a)。< p="">

⑵ 对于任意指数函数y=ax (a>0且a≠1),都有f(1)=a。

2、对数函数:函数y=logax(a>0且a≠1)),叫做对数函数

a 的取值a>10<a<1
定义域x∈(0,+∞)x∈(0,+∞)
值域y∈Ry∈R
单调性全定义域单调递全定义域单调递减
奇偶性非奇非偶函数非奇非偶函数
过定点(1,0)(1,0)

3、幂函数:函数y=xa(a∈R),高中阶段,幂函数只研究第I象限的情况。

⑴所有幂函数都在(0,+∞)区间内有定义,而且过定点(1,1)。

⑵a>0时,幂函数图像过原点,且在(0,+∞)区间为增函数,a越大,图像坡度越大。

⑶a<0时,幂函数在(0,+∞)区间为减函数。

当x从右侧无限接近原点时,图像无限接近y轴正半轴;

当y无限接近正无穷时,图像无限接近x轴正半轴。

幂函数总图见下页。

4、反函数:将原函数y=f(x)的x和y互换即得其反函数x=f-1(y)。

反函数图像与原函数图像关于直线y=x对称。

高一数学学习方法

先看笔记后做作业。有的高中学生感到。老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。

做题之后加强反思。学生一定要明确,现在正坐着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思。总结一下自己的收获。要总结出,这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,日久天长,构建起一个内容与方法的科学的网络系统。

配合老师主动学习。高中学生学习主动性要强。小学生,常常是完成作业就尽情的欢乐。初中生基本也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只知道做作业就绝对不够;老师的话也不少,但是谁该干些什么了,老师并不一一具体指明,因此,高中学生必须提高自己的学习主动性。准备向将来的大学生的学习方法过渡。

课内重视听讲,课后及时复习。新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复5 习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络。

建立良好的学习数学习惯。习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。适当多做题,养成良好的解题习惯。

高一数学学习技巧及经验

对于基础一般人来说,数学考试最重要的就是不能心太大。数学的学习需要天分,更需要技巧。平时一定不能松懈,每天都必须做题保持熟练程度。并且从平时开始,做题就要养成细心仔细的习惯,要保持一定的警惕(非常重要!!!!),注意是否有没有出题老师挖的陷阱,有没有未考虑到的地方,比如集合里的空集,函数大题里的定义域,分母不能为零等等。还有就是要动脑,数学不像有些学科现成的东西对号入座就可以了,数学需要你有灵活的思维,不动脑筋就想学好考好是不可能的。

高考的数学,最后两道题的难度,是超过很多人的想象的,特别是最后一道压轴题的第二、第三问,即使想到做这道题的方法,要想完全答对,必须经过很复杂的推断步骤,在这个过程中,很难避免不出差错。因此,数学想得满分,是基本上不可能的事。从各省公布的状元啥的单科最高分,也是很难得见到数学满分的。通常,数学要想得140分以上,是很困难的事。

对于数学基础好、做题速度比较快的同学,在总复习阶段,一定要搭配高难度的题做,否则,面对每次考试的压轴题就会感到困难。

从某种角度讲,数学也是技能型的学科,用“三天不练就手生”来形容绝不为过,因此数学也是需要经常练习,不间断,最好是每天都能保持做一点点的题。

在平时的作业中,注意提高做题的速度,在高考数学中,很少有人说时间绝对的够用,从高三起,注意大小考试的时间分配。记录每次做填空、选择题、以及后面大题所花的时间,以及最后的准确度,为考试中的判断提供经验。

高中的数学考试,由于对数理思维能力要求很高,所以在考试的时候,考试的心情、身体状况、以及考前几天是否做过练习都对考试成绩有影响。

在考试的时候,不要总想着要考多少多少分,要把注意力放在题上。时间分配很重要,不是说做一道题就看一次时间,但是一定要有个大致的规划,要找到最合适的做题速度,不会因为做的太快降低正确率,也不因为做的太慢而浪费时间。总之,在经历了多次考试后,一定要争取找到适合自己的做题速度。该放弃的题一定要放弃,花20分钟去做5分的选择题、4分的填空题或者6分的大题某小问是没有多大意义的。对于数学基础不是很好,平时考试很少上130分的同学,建议在考试中,先做压轴题,后两问如果经过短暂的思考还没找到方法的,直接放弃,把宝贵的时间分配到前面的容易得分的题中去。

学习的责任心和自信心在学习数学过程中也是十分重要,只要是从初一开始,踏踏实实按照数学学习的规律在学习,数学思维会得到逐步的提高,即使缺少天分,经过六年的踏实训练,高考数学试卷中80%的题是基础的试题,只要细心不出差错,基础部分拿到满分是完全可能的,也就是120分。再把这个踏实的精神用在其它学科上,在其它学科上多得一点分,完全可以弥补天分的不足,考北大清华也是没多少问题的,即使考不上北大清华,差距也不会太大。

81216