公务员行测考试定值问题示例
1.什么是和定最值和定最值,顾名思义,在和一定的条件下求解最值的问题。让我们来通过一道例题,来看看和定最值的题型特征。
例题:在一场百分制的考试中,5个人的总分是330分,这5个人都及格了,而且每个人成绩是互不相等的整数。那么成绩最好的最多得几分?
首先我们去看题干,“5个人的总分是330分”意思是这5个人的成绩和是一个定值,也就是“和定”,问的是“成绩最好的最多得几分”求得是其中一个人所得成绩最大值,也就是“最值”,属于和定最值的题型特征。
2.解题原则对于和定最值问题的解题原则是:当总和一定的情况下,若要求其中某个量的最大值,其他量应该尽可能小,若要求其中某个量的最小值,其他量应该尽可能大。解题方法主要就是设未知数,根据题目列方程求解。
3.方法运用例题:在一场百分制的考试中,5个人的总分是330分,这5个人都及格了,而且每个人成绩是互不相等的整数。
问题1:成绩最好的最多得几分?
【解析】题目中提到每个人是互不相等的整数,所以我们可以将5人成绩按照从大到小进行排序。根据解题原则,5人成绩总和是330,成绩最好的人得分要尽可能地多,那其余4人得分要尽可能小,而且每个人都及格且是互不相等的整数,进而可以推出第五名成绩为60,第四名成绩要比第五名多,还得尽可能小,那么就比第五名多1分,也就是61,以此类推,第三名成绩为62,第二名成绩为63。设第一名成绩为X,可列方程:X+63+62+61+60=330,解得X=84,因此成绩最好的最多得84分。
问题2:成绩最差的最多得几分?
【解析】依然将5人成绩按照从大到小进行排序。根据解题原则,5人成绩总和是330,成绩最差的人得分要尽可能地多,那其余4人得分要尽可能小,而且每个人都及格且是互不相等的整数,我们会发现成绩好的人分数要尽可能的低,成绩差的人成绩反而要尽可能的高,每个人都不好确定,那不妨就问谁设谁,设第五名最多为X,那么第四名成绩要比第五名高,要尽可能的低,还得是整数,那么就比第五名多1分,也就是X+1,以此类推,第三名成绩为X+2,第二名成绩为X+3,第一名成绩为X+4,可列方程:X+4+X+3+X+2+X+1+X=330,也就是5X+10=330,解得X=64,因此成绩最差的最多得64分。
问题3:若第一名成绩不超过70,则成绩第三的最少得几分?
【解析】同样的条件下,依旧将5人成绩按照从大到小进行排序。根据解题原则,5人成绩总和是330,成绩第三的人得分要尽可能地少,那其余4人得分要尽可能多,而且每个人都及格且是互不相等的整数,我们可以先把能够确定的先确定下来。第一名要尽可能地多,而且不超过70,那么第一名最多就是70分,第二名要比第一名分少,还得是尽可能的大的整数,那么第二名就比第一名少1分,也就是69,第三名是我们要求的,不妨设第三名最少为X,那么第四名成绩要比第三名低,还得是尽可能高的整数,那么就比第三名少1分,也就是X-1,以此类推,第五名成绩为X-2,可列方程:70+69+X+X-1+X-2=330,解得X≈64.67,因为每个人都是整数,这里的X是第三名最少的得分情况,第三名最少是64.67,分数不能比64.67更少,所以需要向上取整为65分。
公务员行测考试定值问题示例【篇2】
一、数字特性
掌握一些最基本的数字特性规律,有利于我们迅速的解题。(下列规律仅限自然数内讨论)
(一)奇偶运算基本法则
【基础】奇数±奇数=偶数;
偶数±偶数=偶数;
偶数±奇数=奇数;
奇数±偶数=奇数。
【推论】
1.任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。
2.任意两个数的和或差是奇数,则两数奇偶相反;和或差是偶数,则两数奇偶相同。
(二)整除判定基本法则
1.能被2、4、8、5、25、125整除的数的数字特性
能被2(或5)整除的数,末一位数字能被2(或5)整除;
能被4(或 25)整除的数,末两位数字能被4(或 25)整除;
能被8(或125)整除的数,末三位数字能被8(或125)整除;
一个数被2(或5)除得的余数,就是其末一位数字被2(或5)除得的余数;
一个数被4(或 25)除得的余数,就是其末两位数字被4(或 25)除得的余数;
一个数被8(或125)除得的余数,就是其末三位数字被8(或125)除得的余数。
2.能被3、9整除的数的数字特性
能被3(或9)整除的数,各位数字和能被3(或9)整除。
一个数被3(或9)除得的余数,就是其各位相加后被3(或9)除得的余数。
3.能被11整除的数的数字特性
能被11整除的数,奇数位的和与偶数位的和之差,能被11整除。
(三)倍数关系核心判定特征
如果a∶b=m∶n(m,n互质),则a是m的倍数;b是n的倍数。
如果x=mny(m,n互质),则x是m的倍数;y是n的倍数。
如果a∶b=m∶n(m,n互质),则a±b应该是m±n的倍数。
二、乘法与因式分解公式
正向乘法分配律:(a+b)c=ac+bc;
逆向乘法分配律:ac+bc=(a+b)c;(又叫“提取公因式法”)
平方差:a2-b2=(a-b)(a+b);
完全平方和/差:(a±b)2=a2±2ab+b2;
立方和:a3+b3=(a+b)(a2-ab+b2);
立方差:a3-b3=(a-b)(a2+ab+b2);
完全立方和/差:(a±b)3=a3±3a2b+3ab2±b3;
等比数列求和公式:S=a1(1-q^n)/(1-q) (q≠1);
等差数列求和公式:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2。
公务员行测考试定值问题示例【篇3】
一、树木类的意象:
1、松柏:傲雪斗霜的典范,常用来寓意正直,坚贞,顽强。
2、梧桐:凄凉悲伤的象征。
3、芭蕉:常与孤独忧愁,离愁别绪相联系。
4、柳树:送别。
二、花草类的意象:
1、菊花:隐士、斗士;以及伤感。
2、梅花:高洁、不怕打击挫折;以及敢为天下先及精神。
3、莲花:出淤泥而不染;高洁 。
4、落后:惜春,伤时;对于生命短暂的惆怅。
三、鸟兽类的意象:
1、杜鹃(子规):凄凉、悲伤。
2、鹧鸪:离别的伤感惆怅或对故乡的思念。
3、鸿雁:游子思乡怀亲之情和羁旅伤感之情。
四、自然现象类的意象:
1、月亮:寄托相思之情,抒发思乡怀人之感。
2、残阳:家国之悲,身世之感,男女不得相见的伤感情思。
3、流水:时光流逝,历史变迁的感叹。