九年级上册数学期末试卷
九年级上册数学期末试卷(精选篇1)
1.温故法
概念教学的起步是在已有的认知结论的基础上进行的。因此,教学新概念前,如果能对自己认知结构中原有的概念适当作一些结构上的变化,引入新概念,则有利于促进新概念的形成。
2.类比法
抓住新旧知识的本质联系,有目的、有计划地让自己将有关新旧知识进行类比,就能很快地得出新旧知识在某些属性上的相同(相似)的结构而引进概念。
3.喻理法
为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念,谓之喻理导入法。
如,学“用字母表示数”时,先出示的两句话:“阿Q和小D在看《W的悲剧》。”、“我在A市S街上遇见一位朋友。”问:这两个句子中的字母各表示什么?再出示扑克牌“红桃
A”,要求自己回答这里的A则表示什么?最后出示等式“0.5×x=3.5”,擦去等号及3.5,变成“0.5×x”后,问两道式子里的X各表示什么?根据自己的回答,教师结合板书进行小结:字母可以表示人名、地名和数,一个字母可以表示一个数,也可以表示任何数。
这样,枯燥的概念变得生动、有趣,同学们在由衷的喜悦中进入了“字母表示数”概念的学习。
4.置疑法
通过揭示数学自身的矛盾来引入新概念,以突出引进新概念的必要性和合理性,调动了解新概念的强烈动机和愿望。
5.演示法
有些教学概念,如果把它最本质的属性用恰当的图形表示出来,把数与形结合起来,使感性材料的提供更为丰富,则会收到良好效果,易于理解和掌握。
如,学“求一个数的几倍是多少”的应用题,重要的是建立“倍”的概念。引进这个概念,可出示
2只一行的白蝴蝶图,再2只、2只地出示3个2只的第二行花蝴蝶图,结合演示,通过循序答问,使自己清晰地认识到:花蝴蝶与白蝴蝶比较,白蝴蝶1个2只,花蝴蝶是3个2只;把一个2只当作1份,则白蝴蝶的只数相当于1份,花蝴蝶就有3份。用数学上的话说:花蝴蝶与白蝴蝶比,把白蝴蝶当作一倍,花蝴蝶的只数就是白蝴蝶的3倍,这样,从演示图形中让自己看到从“个数”到“份数”,再引出倍数,很快地触及了概念的本质。
6.问答法
引入概念采用问答式,能在疑、答、辩的过程中,步步探幽,引人入胜。
九年级上册数学期末试卷(精选篇2)
一、选择题(每题3分、共30分)
1.四会市现在总人口43万多,数据43万用科学记数法表示为( )
A.43×104B.4.3×105C.4.3×106D.0.43×106
2.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( )
A.①②B.②③C.②④D.①④
3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于( )
A.20B.15C.10D.5
4.如图是一个用相同的小立方体搭成的几何体的三视图,则组成这个几何体的小立方体的个数是( )
A.2B.3C.4D.5
5.在平面中,下列命题为真命题的是( )
A.四边相等的四边形是正方形
B.对角线相等的四边形是菱形
C.四个角相等的四边形是矩形
D.对角线互相垂直的四边形是平行四边形
6.若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是( )
A.m<﹣4b.m>﹣4C.m<4d.m>4
7.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为( )
A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1
8.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( )
A.B.C.D.
9.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为( )
A.B.C.D.
10.如图,抛物线y=x2与直线y=x交于A点,沿直线y=x平移抛物线,使得平移后的抛物线顶点恰好为A点,则平移后抛物线的解析式是( )
A.y=(x+1)2﹣1B.y=(x+1)2+1C.y=(x﹣1)2+1D.y=(x﹣1)2﹣1
二、填空题(每题3分、共30分)
11.若在实数范围内有意义,则x的取值范围是 .
12.已知一次函数y=kx+3的图象经过第一、二、四象限,则k的取值范围是 .
13.分解因式:3ax2﹣3ay2= .
14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .
15.设x1、x2是方程3x2﹣x﹣1=0的两个实数根,则3x12﹣2x1﹣x2的值等于 .
16.某商品原价289元,经过两次连续降价后售价为256元,设平均每次降价的百分率为x,则由题意所列方程 .
17.若|a﹣3|+(a﹣b)2=0,则ab的倒数是 .
18.如图,在?ABCD中,AE⊥BC于E,AE=EB=EC=a,且a是一元二次方程x2+2x﹣3=0的根,则?ABCD的周长是 .
19.如图,A(4,0),B(3,3),以AO,AB为边作平行四边形OABC,则经过C点的反比例函数的解析式为 .
三、解答题(共60分)
20.(﹣1)0+()﹣2﹣.
21.先化简,再求值:,其中.
22.解不等式组:,并把解集在数轴上表示出来.
23.某校初三(1)班的同学踊跃为“雅安芦山地震”捐款,根据捐款情况(捐款数为正数)制作以下统计图表,但生活委员不小心把墨水滴在统计表上,部分数据看不清楚.
捐款人数
0~20元
21~40元
41~60元
61~80元6
81元以上4
(1)全班有多少人捐款?
(2)如果捐款0~20元的人数在扇形统计图中所占的圆心角为72°,那么捐款21~40元的有多少人?
24.四张扑克牌的点数分别是2,3,4,8,将它们洗匀后背面朝上放在桌上.
(1)从中随机抽取一张牌,求这张牌的点数偶数的概率;
(2)从中随机抽取一张牌,接着再抽取一张,求这两张牌的点数都是偶数的概率.
25.如图.直线y=ax+b与双曲线相交于两点A(1,2),B(m,﹣4).
(1)求直线与双曲线的解析式;
(2)求不等式ax+b>的解集(直接写出答案)
26.(10分)(南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:
信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.
信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.
根据以上信息,解答下列问题;
(1)求二次函数解析式;
(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?
27.(12分)(包头)阅读并解答:
①方程x2﹣2x+1=0的根是x1=x2=1,则有x1+x2=2,x1x2=1.
②方程2x2﹣x﹣2=0的根是x1=,x2=,则有x1+x2=,x1x2=﹣1.
③方程3x2+4x﹣7=0的根是x1=﹣,x2=1,则有x1+x2=﹣,x1x2=﹣.
(1)根据以上①②③请你猜想:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根为x1,x2,那么x1,x2与系数a、b、c有什么关系?请写出你的猜想并证明你的猜想;
(2)利用你的猜想结论,解决下面的问题:
已知关于x的方程x2+(2k+1)x+k2﹣2=0有实数根x1,x2,且x12+x22=11,求k的值.
九年级上册数学期末试卷(精选篇3)
(一)课前准备要有预见性
预防错误的发生,是减少初中学生解题错误的主要方法。讲课之前,如果能预见到学生学习本课内容可能产生的错误,就能够在课内讲解时有意识地指出并加以强调,从而有效地控制错误的发生。
例如,学习方程x/0.7-(0.17-0.2x)/0.03=1之前,要预见到本题要用分式的基本性质与等式的性质,两者有可能混淆,因而要在复习时准备一些分数的基本性质与等式的性质的练习,弄清两者的不同,避免产生混乱与错误。因此学习时,要仔细研究正文中的防错文字、例题后的注意、小结与复习中的应该注意的几个问题等,能够预先明了容易出错之处,防患于未然。如果出现问题而未查觉,错误没有得到及时的纠正,则遗患无穷,不仅影响当时的学习,还会影响以后的学习。因此,预见错误并有效防范能够为揭示错误、消灭错误打下基础。
(二)课内学习要有针对性
在课内学习时,要对可能出现的问题进行针对性的学习。对于容易混淆的概念,要用对比的方法,弄清它们的区别和联系。对于规律,应搞清它们的来源,分清它们的条件和结论,了解它们的用途和适用范围,以及应用时应注意的问题。展示揭示错误、排除错误的手段,会识别错误、改正错误。对错误回答,要分析其原因,进行针对性讲解,利用反面知识巩固正面知识。课堂练习是发现错误的另一条途径,出现问题,及时解决。总之,要通过课堂教学,不仅教会学生知识,而且要学会识别对错,知错能改。
(三)课后学习要有总结性
要认真分析作业中的问题,总结出典型错误,加以评述。通过讲评,进行适当的复习与总结,也要再经历一次调试与修正的过程,增强识别、改正错误的能力。