高分网 > 通用学习方法 > 课堂学习 >

二元一次方程的解法

时间: 泽慧 课堂学习

1、代入消元法

通过代入消去一个未知数, 将方程组转化为一个一元一次方程来解, 这种解法叫做代入消元法。

求解步骤:

1) 从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来;

2) 把1)中所得的新方程代入另一个方程,消去一个未知数;

3) 解所得到的一元一次方程,求得一个未知数的值

4) 把所求得的一个未知数的值代入1)中求得的方程,求出另一个未知数的值,从而确定方程组的解。

2、加减消元法

两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加减,就能消去这个未知数,得到一个一元一次方程,这种求解方法叫做加减消元法。

求解步骤:

1) 方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,就用适当的整数乘方程两边,使相乘后一个未知数的系数与另一方程中该未知数的系数互为相反数或相等;

2) 把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;

3) 解这个一元一次方程;

4) 将求出的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,从而得到方程组的解。

二元一次方程的定义是什么

二元一次方程的定义为:如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。

二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。如一次函数中的平行。二元一次方程的一般形式:ax+by+c=0其中a、b不为零。这就是二元一次方程的定义。

二元一次方程求根公式:ax^2+bx+c=0。含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。

二元一次方程的实际应用

二元一次方程组实际应用题中行程问题的种类较多,比如相遇问题、追及问题、流水行船问题、顺风逆风问题、火车过桥问题等,解这类问题抓住路程、时间、速度三者之间的关系:路程=速度×时间。

古代问题在方程组中也比较常见,一般虽然是古文,但是题目中一般都会有相应的解释,关键还是需要找到等量关系式。

销售问题中常见的量有:售价、成本价、利润、利润率等,利润=售价-进价、利润率=利润/成本价、总利润=单件利润×销售量。

二元一次方程的介绍

二元一次方程:如果一个方程含有两个未知数,并且未知数的指数是1那么这个整式方程就叫做二元一次方程,有无穷个解。二元一次方程的一般形式:ax+by=0(a,b不为0)。二元一次方程组:把两个共含有两个未知数的一次方程合在一起就组成一个二元一次方程组。二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。消元:将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。消元的方法有两种:代入消元法。加减消元法。

二元一次方程求根公式如何推导出来的

消元法的例子

(1)x-y=3

(2)3x-8y=4

(3)x=y+3

代入得(2)

3×(y+3)-8y=4

y=1

所以x=4

这个二元一次方程组的解

x=4

y=1

教科书中没有的,但比较适用的几种解法

(一)加减-代入混合使用的方法.

例1,13x+14y=41(1)

14x+13y=40(2)

解:(2)-(1)得

x-y=-1

x=y-1(3)

把(3)代入(1)得

13(y-1)+14y=41

13y-13+14y=41

27y=54

y=2

把y=2代入(3)得

x=1

所以:x=1,y=2

特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元。

104995