高分网 > 通用学习方法 > 课堂学习 >

配方法解一元二次方程教学反思

时间: 子文2 课堂学习

  配方法解一元二次方程教学反思篇一

  配方法解一元二次方程教学反思篇二

  通过本节课的教学,我发现:配方法不仅是解一元二次方程的方法之一,而且它还可作为其它许多数学问题的一种研究思想,其发挥的作用和意义十分重要。从学生的学习情况来看,效果普遍良好,且已基本掌握了这种数学方法,从本节课的具体教学过程来分析,我有以下几点体会和认识。

  1、学生对这块知识的理解很好,在讲解时,我通过引例总结了配方法的具体步骤,即:

  ①化二次项系数为1;②移常数项到方程右边;③方程两边同时加上一次项系数一半的平方;④化方程左边为完全平方式;⑤(若方程右边为非负数)利用直接开平方法解得方程的根。如上让学生来掌握配方法,理解起来也很容易,然后再加以练习巩固。

  2、在讲解过程中,我提示学生,配方法是不是可以解决“任何一个”一元二次方程呢?若不能,如何来确定它的“适用范围”?多数学生迅速开动脑筋并发现“配方法”能简便解决一部分“特殊方程”,而例如x2+2x=0,4x2+4x+1=0,2y2-3y+1=0这些方程用“配方法”的话就相当麻烦,不如用“求根公式”或“因式分解”来解简单,由此,我抓住这个契机向学生引申:解决一个问题的途径可能有多种思路,但为了提高学习效率,我们尽量选择一个简便易行的方案,这也是解决数学问题的一种必备思想。(这种说法也提示学生注意解一元二次方程每种方法的特点和适用环境)。

  3、当然在这一块知识的教学过程中,学生也出现了个别错误,表现在:①二次项系数没有化为1就盲目配方;②不能给方程“两边”同时配方;③配方之后,右边是0,结果方程根书写成x=的形式(应为x1=x2=);④所给方程的未知字母有时不是x,而是y、z、a、m等,但个别粗心甚至细心的同学在结果写方程根时字母都变成了x,对于以上错误,我在最后的知识小结中,又重点强调了配方法的一般步骤,并说明其中关键的一步是第③步,必须依据等式的基本性质给方程两边同时加常数。

  4、对于基础较差的少数学生我只要求认真理解并巩固“配方法”;对于基础较好的同学根据他们的课堂反应,我还在知识拓宽方面加以提示:因为完全平方式的值定是非负数,故若在说明某一多项式是否为非负数时,可采用配方法来证,这样对有些善于钻研思考的同学来说,在有关配方法的应用和探究方面,为之起到“抛砖引玉”的作用,也为后期部分知识的教学作了一定的铺垫。

  5、在我本节课的教学当中,也有如下不妥之处:①对不同层次的学生要求程度不适当;②在提示和启发上有些过度;③为学生提供的思考问题时间较少,导致部分学生对本节知识“囫囵吞枣”,而最终“消化不良”,在以后的课堂教学中,我会力争克服以上不足。

  配方法解一元二次方程教学反思篇三

  在模块五的教学案例中,我所写的是《用配方法解一元二次方程》,是本章解法的第二课时,我的设计思路如下:

  首先因为学生在开始已经学习了用直接开平方法和因式分解法解一元二次方程,因此通过大屏幕展示学生比较感兴趣的篱笆问题引入,从而引出本节课的《用配方法解一元二次方程》,在学生掌握的过程中,选取不同类型的方程让学生用配方法解,以达到巩固的目的,最后为了进一步拓展提升,出现了二次项系数不是一的方程,让学生学会用类比的方法解决问题。

  我认为本节课自己在实施学生主体参与方面做到比较成功:

  1.巩固旧知对学生来说是非常重要的,尤其是初三年级的学生大部分已经有了厌学的情绪,或是怕自己跟不上,产生消极的心里,通过复习旧知,可唤起他们学习的积极性,大面积提高课堂效率。

  2.从生活实例中引入新课,是数学课程标准的要求,学生们学习数学的目的就是为了应用数学知识解决实际问题,对他们感兴趣的话题他们就会愈学愈带劲,这样更能提高学困生的学习积极性。

  3.初三数学又得体现分次优化,因此,在本节课的重点教学时,我备课翻阅了近几年的中考题,选择了一些比较典型的习题让同学们来做,并让他们在小组内充分的交流,以达到提高全体学生学习积极性的目的。

  教学中还有许多需要改进的地方:

  1.本节课中有些能够让学生口答的地方应节省出时间让学生做大量的类型题,以提高优生的能力。

  2.课堂小结的权利也应交给学生来总结,以提高学生的主体参与能力。

  3.题目的难易度没有掌握好,根本上解决不了好学生吃不饱,跟队生吃不了的问题。

  4.课堂容量不大,节奏比较缓慢。应该是大容量,快节奏,高效率。


  看了“配方法解一元二次方程”

61364