分式方程教学设计 分式方程优秀教案
《分式方程》教学设计
(一)知识与技能
理解分式方程与整式方程的区别,并掌握解分式方程的一般步骤。
(二)过程与方法
通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤,使学生进一步了解数学思想中的"转化"思想 。
(三)情感、态度与价值观
培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。
教学重点:探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤
教学难点 :探索分式方程产生增根的原因。
教学过程
一.创设情境,导入新课:
为帮助四川受灾的人们重建家园,某中学号召同学们自愿捐款。已知第一次捐款总额为2000元,第二次捐款总额为2150元,第二次捐款人数比第一次多15人,而且两次人均捐款额恰好相等。
根据以上信息你能分别求出两次捐款的人数吗?
若设第一次捐款人数为X人,第二次捐款人数为 ( ) 人。
根据相等关系列方程为( )。
这个方程的分母中含有未知数,与以前学过的方程不同,这就是我们这节课要学习的分式方程。(板书课题)
二.新课学习:
(一).分式方程的定义:
分母中含有未知数的方程叫做分式方程
以前学过的像一元一次方程、二元一次方程等这类分母中不含有未知数的方程叫整式方程
反馈练习
(二).探索分式方程的解法
1.回顾整式方程的解法
解方程 (解上面练习中的第三题)
师生共同回顾:解整式方程的步骤
(1)去分母,(2)去括号, (3)移项, (4)合并同类项, (5)化未知x的系数为1
2.如何解分式方程呢?
(学生尝试完成,然后集体补充步骤)
解方程:2000∕X=2150/X+15
解:方程两边同时乘以X(X+15),得
2000(X+15)=2150X
解这个整式方程,得
x=200
则200+15=215
检验:把x=200代入原方程,
因为 左边=10 右边=10
所以 左边=右边
所以x=200是原方程的解。
3.归纳解分式方程的步骤
一是去分母,二是解整式方程,三是检验
4.例题解方程:
(生独立完成,师指导)
分式方程的增根:不适合原方程的整式方程的根,叫原方程的增根.
师:解分式方程必须进行检验!
[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?
[生]最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去。
三.应用升华
四.小结
本节课我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可,我明白了分式方程转化为整式方程为什么会产生增根。
《分式方程》知识点总结
知识点精讲
1.分式方程:分母中含有 的方程叫分式方程.
2.解分式方程的一般步骤:
(1)去分母,在方程的两边都乘以 ,约去分母,化成整式方程;
(2)解这个整式方程;
(3)验根,把整式方程的根代入 ,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.
3. 用换元法解分式方程的一般步骤:
① 设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;② 解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③ 把辅助未知数的值代入原设中,求出原未知数的值;④ 检验作答.
4.分式方程的应用:
分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:
(1)检验所求的解是否是所列 ;(2)检验所求的解是否 .
5.易错知识辨析:
(1)去分母时,不要漏乘没有分母的项.
(2) 解分式方程的重要步骤是检验,检验的方法是可代入最简公分母, 使最简公分母为0的值是原分式方程的增根,应舍去,也可直接代入原方程验根.
(3)如何由增根求参数的值:①将原方程化为整式方程;②将增根代入变形后的整式方程,求出参数的值.
三.例题分析与跟踪训练
知识点1 分式方程解法
例1解分式方程:
分析:按照去分母、移项、合并同类项、系数化为1的步骤解分式方程,对得到的方程的解一定要检验是否为增根。
解:去分母,得
解得
经检验 是原方程的解
所以原方程的解是 .
方法点拨:对求出的方程的解一定要进行检验,此点最易忽略。
跟踪训练1:分式方程 的解为( )
A.1 B.-1 C.-2 D.-3
知识点2 增根的意义
例2若关于 的分式方程 无解,则 .
分析:本题考查了分式方程增根的意义。根据分式方程求解出的未知数的值,若使分式方程任一分母为零,则为增根,即原方程无解。
解:1或-2
方法点拨:理解分式方程增根的意义是解答此类问题的关键。
跟踪训练2:关于x的方程 的解是正数,则a的取值范围是
A.a>-1 B.a>-1且a≠0
C.a<-1 D.a<-1且a≠-2
知识点3换元法解分式方程
例3:用换元法解分式方程时,如果设 ,将原方程化为关于 的整式方程,那么这个整式方程是( )
A. B.
C. D.
分析: 利用转化思想,将代入原分式方程,并进行去分母以转化为整式方程。
解:选A
方法点拨:利用转化思想,将复杂的分式方程转化为整式方程,在使用换元法时要注意去分母时,最简公分母的选择。
跟踪训练3:解方程 时,若设 ,则方程可化为 .
知识点4 分式方程的应用
例4:在某铁路工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?
分析:设甲工程队单独完成任务需 天,则乙工程队单独完成任务需 天,甲、乙所做的任务总和为总工程。
解:依题意得 .
化为整式方程得
解得 或 .
看了“分式方程教学设计”