等式的性质教学设计 等式的性质优秀教案
《等式的性质》教学设计
通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
过程与方法:
利用观察天平保持平衡所发现的规律能直接判断天平变化后能否保持平衡。
情感态度与价值观:
培养学生观察与概括、比较与分析的能力。
教学重难点:
理解,并能用自己的话来阐述天平保持平衡的几种变换情况,进而发现等式保持不变的规律。
教学准备:
教具准备:天平及相关物品。
学具准备:练习本
教学过程:
一、导入新课:同学们用天平做过实验吗?今天我们就要用天平去发现一些重要的规律,有信心吗?
二、新知探究
(一)探寻发现“天平保持平衡的规律1”。
第一步,出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明什么?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板)。
第二步,问:想一想,怎样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生什么变化?教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b 。
第三步,问:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?学生回答后,老师一一演示验证。
第四步,想一想,怎样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?
第五步,在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a 。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)
第六步,应用,进一步验证。展示数学书P64页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。
(二)探寻发现“天平保持平衡的规律2”。
第一步,出示天平,左盘放一瓶墨水,右盘放两个铅笔盒,天平保持平衡。一瓶墨水等于两个铅笔盒的质量,如果设一瓶墨水重c克,1个铅笔盒重d克,则可以用一个等式来表示:即c=2d(板),
第二步,问:想一想,如果在左边再放上1瓶墨水,右边再放上2个铅笔盒,天平还保持平衡吗?验证,天平两边加的东西不同,数量也不同,为什么还能保持平衡呢?学生可能会说,因为两边增加的质量相同,肯定;同时引导,天平左边的质量在原来的基础上发生了什么变化?(扩大了2倍),右边呢?(也扩大了两倍)因此,天平两边尽管所增加的东西不同,数量不同,但两边质量所发生的变化是相同的,都扩大了2倍,所以天平仍然保持平衡。用式子表示就是c×2=2d×2 。
第三步,刚才的演示反过来,就是天平两边同时缩小相同的倍数,天平保持平衡,用式子表示就是2c÷2=4d÷2。因此,天平除了在两边同时增加或减少同样的物品会保持平衡外,还可怎么变换也可以保持平衡?归纳得出:天平两边物品的质量同时扩大或缩小相同的倍数,天平保持平衡。
第四步,进一步验证,出示P56的情景,问要求1个排球和几个皮球同样重该怎么办?两边质量同时缩小2倍,即把两边的球都平均分成2份,保留其中的一份,按其操作,天平保持平衡,得出结论:1个排球和3个皮球同样重。
(三)小结天平保持平衡的变换规律,引出等式不变的规律。
通过刚才的实验,我们发现了什么,谁来总结一下。
得出天平保持平衡的变换规律:(1)天平两边同时增加或减少同样的物品,天平保持平衡;(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。
老师引导:我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。
交流,发现:等式保持不变的规律:(1)等式两边都加上或减去相同的数,等式保持不变;(2)等式两边都乘或除以相同的数(0除外),等式不变。
三、练习
1. 根据等式的基本性质,把下面的等式填写完整。
(1)因为a+b=c, 所以a+b+( )=c+15
(2)因为a+b+35=m+a, 所以( )+35=m
(3)因为5a=b,所以 5a d=( ) ×( )
(4)因为300ab=5bc,所以 300a =5× ( )
(5)因为6a=2b,所以 30a = ( )
2.用字母表示下面的数量关系。
(1)五年级有男生a人,女生比男生多20人,五年级有学生多少人?
(2)一本书200页,小明安排b天看完,他平均每天看多少页?
(3)一盒牛奶3元,每千克苹果5元,妈妈买了a盒牛奶和b千克苹果,她一共要付出多少钱?
四:小结
有什么收获?还有什么问题?
《等式的性质》知识点总结
什么叫等式?
等号左边的数值与等号右边的数值相等的式子叫做等式。
定义:数学术语,含有等号的式子叫做等式。
形式:把相等的两个数(或字母表示的数)用等号连接起来
等式的性质
性质1:
等式两边同时加上(或减去)同一个数(或式子),结果仍相等。若a=b那么a+c=b+c
性质2:
等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。若a=b那么有a·c=b·c或a÷c=b÷c(c≠0)
性质3:
等式两边同时乘方(或开方),两边依然相等若a=b那么有a^c=b^c或(c次根号a)=(c次根号b)
性质4:
等式具有传递性。若a1=a2,a2=a3,a3=a4,……an=an,那么a1=a2=a3=a4=……=an
等式的基本性质
等式两边同时加(或减)同一个数或同一个代数式,所得的结果仍是等式。用字母表示为:若a=b,c为一个数或一个代数式。则:(1)a+c=b+c(2)a-c=b-c
等式的两边同时乘或除以同一个不为0的数所得的结果仍是等式。
(3)若a=b,则b=a(等式的对称性)。
(4)若a=b,b=c则a=c(等式的传递性)。
用字母表示为:若a=b,c为一个数或一个代数式(不为0)。则:a×c=b×ca÷c=b÷c
看了“等式的性质教学设计”