初中数学高效学习方法总结
其次,我们可以把学习简单的分为四个方面:
①我们需做好预习,“读、划、写、查”是预习的基本步骤。
②认真听课,记好课堂笔记。提高数学能力。
③培养独立完成作业的好习惯。
④学习要经常总结规律,不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。
再次,学习方法是灵活多样、因人而异的,能不断改进自己的学习方法,总结适合自己的学习方法,是你学习能力不断提高的表现。学习成绩的优劣,固然取决于多种因素,但只要自己有恒心能学好,相信能看到你巨大的进步的。
初中数学学习方法指导
1.预习方法的指导初一学生不懂得什么叫预习,为什么要预习,以致于教师布置了预习,学生只是多看了一遍或几遍书而已,起不到什么效果。因此在指导学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本节知识的结构体系。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。先进行单元预习粗读过程,随后进行单课预习精读过程。预习前教师先布置预习提纲,使学生有的放矢。养成良好的预习习惯,是培养学生的自学能力的关键所在,它能使学生变被动学习为主动学习。
2.听课方法的指导听课习惯直接影响听课效果,所以一定要养成学生良好的听课习惯,注意处理好以下环节:首先指导学生注意听学习要求、听知识引入以及知识形成过程,听重点、难点剖析,听例题解法的思路和数学思想方法的体现,听好课后小结。这就要求教师讲课要重点突出,层次分明,把握讲授时间,使学生听之有效。其次要指导学生认真“思”。思维能力是学生学习的主体,所以要求多思、勤思,随听随思;深思、善思与反思。可以说“听”是“思”的基础关键,“思”是“听”的深化,会听才会思,会思才会学。最后要指导学生去“记”。初一学生一般不记笔记或者是不会合理记笔记,不会记表现在把教师板书的复制,往往是用“记”代替“听”和“思”,记得很全,却耽误了“听”和“思”。因此在指导学生作笔记时应要求学生记笔记服从听讲,适时“记”;记要点、记疑问、记解题思路和方法;记小结、记课后思考题,使学生明确“记”是为“听”和“思”服务的。指导学生只有合理处理好这三者关系,才能真正地走出小学数学的阴影。
3.复习巩固及完成作业方法的指导刚进入初中的初一学生课后以完成作业为目的,巩固、记忆、复习没有形成良好的习惯。因此在作业过程中死搬硬套做好作业完成任务,没有深化理解知识、及时巩固知识,达不到学习的效果。因此在这个环节的学法指导上教师要求学生每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理。然后独立完成作业,解题后再反思。教师通过示范解题指导学生的作业书写格式要规范、条理要清楚。指导时应教会学生如何将文字语言转化为符号语言,如何将推理思考过程用文字书写表达,正确地由条件画出图形。开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯。
初中数学必考知识点
1.数轴
(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.
数轴的三要素:原点,单位长度,正方向。
(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)
(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
2.相反数
(1)相反数的概念:只有符号不同的两个数叫做互为相反数.
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3.绝对值
1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。
①互为相反数的两个数绝对值相等;
②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.
③有理数的绝对值都是非负数.
2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:
①当a是正有理数时,a的绝对值是它本身a;
②当a是负有理数时,a的绝对值是它的相反数﹣a;
③当a是零时,a的绝对值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
初中数学知识点总结
1、实数的分类
有理数:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数。如:-3,,0.231,0.737373...
无理数:无限不环循小数叫做无理数如:π,-,0.1010010001...(两个1之间依次多1个0)。
实数:有理数和无理数统称为实数。
2、无理数
在理解无理数时,要抓住"无限不循环"这一时之,它包含两层意思:一是无限小数;二是不循环.二者缺一不可.归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001...等;
(4)某些三角函数,如sin60o等。
注意:判断一个实数的属性(如有理数、无理数),应遵循:一化简,二辨析,三判断.要注意:"神似"或"形似"都不能作为判断的标准.
3、非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的和为0,则每个非负担数均为0。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴("三要素")。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
5、相反数
实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。
即:(1)实数的相反数是。
初中数学相似三角形知识点
考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。