高分网 > 小升初 > 小升初辅导 >

小升初七种高效学习方法

时间: 李金 小升初辅导

小升初七种高效学习方法

(1)应该培养孩子预习、温习的习惯,但是在适应阶段为了不耽误孩子的学习,可以适当参加一下辅导班,帮助孩子在过渡阶段能跟得上课程进度。

(2)可以给孩子预备一个错题本,及时纠正错题

孩子做错题是经常发生的事,从纠正错误进手也是辅导孩子的好方式。给孩子一个专用的本子。孩子每次作业或考试出现错误,就让孩子在专用的本子上将题目抄下,然后按正确的方法重做一遍。之后分析错误原因,是不会审题,还是粗心大意;是没有把握这部分内容,还是不会正确分析。用红笔将错误的内容标出。过一段时间,与孩子一起整理错题,将错误的类型汇总,看一看哪部分错的最多,哪种错误原因最为常见。这样就对孩子的学习状况有一个清楚的了解,就可以有的放矢地辅导孩子了。

(3)把握阅读步骤和方法,会阅读的一般步骤

当孩子把握一定量汉字时,可以逐步培养他们把握阅读的一般步骤:初读,了解全文大意,划出生字、新词;运用工具书并采用联系上下文语言环境的方法认字、释词、疏通文意,用铅笔标出自然段的数码,了解各自然段的内容。

再读,带着文章“写的什么”和“怎样写的”两个题目熟读,读后分段写出段意,然后把几段的意思联系起来,把握文章的主要内容。

精读,捉住重点段落和重点词语细读,加深对课文内容的理解,在此基础上,概括文章的中心思想和写作特点。熟读,按课后“作业与练习”的要求,进行写和练,达到读好一篇文章的目的。

(4)做读书笔记和摘要

读书时笔记和摘要主要包括以下方面的内容:①记下书名、作者;②采摘生字、新词及佳句;③记录主要人物和主要内容;④在书上批注;⑤列提纲;⑥写读后感。

开始时父母与孩子一起,共同阅读一篇文章,找出文章的中心思想,逐渐就可以让孩子独立完成。

对孩子的阅读内容,不必限制太死。让孩子凭他的爱好自己选择,父母可以进行推荐。只要孩子坚持下往,你会发现孩子的资料积累、阅读能力、回纳能力和表达能力都会有明显的进步,而且孩子还学会了自己学习,你就可以事半功倍地辅导孩子学习了。

(5)家长可以拿出一定的时间,在辅导孩子完成作业之余,还可以和孩子一起做一些趣味练习或者益智题,培养孩子的学习爱好,同时又可以防止无停止的家庭作业让孩子产生反感的'情绪。

(6)学会使用工具书

我国古代思想家孟子有一句很有名的话:“工欲善其事,必先利其器。”在学习中,工具书就是学生的“利器”。使用工具书的能力对于初中生来说,最主要的是学会查字典。要有运用部首、音序等查字法迅速、正确地从字典中查出生字词的能力,还要有联系上下文语言环境选择恰当的义项解释词语的能力。要具备这样能力,就必须要求孩子勤查字典,并进而养成习惯。

(7)具备多种思维方法

发展思维能力是进行方法指导的一项重要内容。教给孩子思维方法除了让他们学会将所学知识进行分类、比较、分析、综合、回纳等一些逻辑思维的基本方法外,还应重视求异思维、发散思维、辩证思维等思维方法的培养,使孩子的思维能够灵活运转。

小升初数学知识要点

第一部份 数与代数

(一)数的认识

整数【正数、0、负数】

一、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。

二、最小的一位数是1,最小的自然数是0。

三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。 +4也可以写成4。

四、像 +4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。

五、0既不是正数,也不是负数。正数都大于0,负数都小于0。

六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。

七、通常情况下,盈利用正数表示,亏损用负数表示。

八、通常情况下,上车人数用正数表示,下车人数用负数表示。

九、通常情况下,收入用正数表示,支出用负数表示。

十、通常情况下,上升用正数表示,下降用负数表示。

小数【有限小数、无限小数】

一、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。

三、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。

四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。

九、整数和小数的数位顺序表:

分数【真分数、假分数】

一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。

二、两个数相除,它们的商可以用分数表示。即:a÷b=b/a(b≠0)

三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。

四、分数可以分为真分数和假分数。

五、分子小于分母的分数叫做真分数。真分数小于1。

六、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。

七、分子和分母只有公因数1的分数叫做最简分数。

八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

九、小数的性质和分数的基本性质一致的,应用分数的基本性质,可以通分和约分。

百分数【税率、利息、折扣、成数】

一、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或百分比,百分数通常用“%”表示。

二、分数与百分数比较:

三、分数、小数、百分数的互化。

(1)把分数化成小数,用分数的分子除以分母。

(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。

(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。

(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。

(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。

(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

四、熟记常用三数的互化。

五、

1、出勤率表示出勤人数占总人数的百分之几。

2、合格率表示合格件数占总件数的百分之几。

3、成活率表示成活棵数占总棵数的百分之几。

六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。

七、1、多的÷“1”=多百分之几 2、少的÷“1”= 少百分之几

八、应得利息是税前利息,实得利息是税后利息。

九、利息 = 本金 × 利率 × 时间

十、应得利息 -利息税 = 实得利息

十一、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。

十二、

1、原价×折扣=现价

2、现价÷原价=折扣

3、现价÷折扣=原价

十三、几成表示十分之几表示百分之几十;几成几表示十分之几点几,表示百分之几十几。

因数与倍数【素数、合数、奇数、偶数】

一、4 × 3 = 12,12是4的倍数,12也是3的倍数,4和3都是12的因数。

二、一个数最小的倍数是它本身,没有的倍数。一个数倍数的个数是无限的。

三、一个数最小的因数是1,的因数是它本身。一个数因数的个数是有限的。

四、5的倍数:个位上的数是5或0。

2的倍数:个位上的数是2、4、6、8或0。2的倍数都是双数。

3的倍数:各位上数的和一定是3的倍数。

五、是2的倍数的数叫做偶数。不是2的倍数的数叫做奇数。

六、一个数,如果只有1和它本身两个因数,这样的数就叫做素数(或质数)。

七、一个数,如果除了1和它本身还有别的因数,这样的数就叫做合数。

八、在1—20这些数中: (1既不是素数,也不是合数)

奇数:1、3、5、7、9、11、13、15、17、19。

偶数:2、4、6、8、10、12、14、16、18、20。

素数:2、3、5、7、11、13、17、19。(共8个,和为77。)

合数:4、6、8、9、10、12、14、15、16、18、20。(共11个,和为132。)

九、最小的奇数是1,最小的偶数是0,最小的素数是2,最小的合数是4。

十、如果两个数是倍数关系,则大数是最小公倍数,小数是公因数。

十一、如果两个数只有公因数1,则公因数是1,最小公倍数是它们的乘积。

(二)数的运算

计算法则【整数、小数、分数】

一、计算整数加、减法要把相同数位对齐,从低位算起。

二、计算小数加、减法要把小数点对齐,从低位算起。

三、小数乘法:1、先按整数乘法算出积是多少,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

2、注意:在积里点小数点时,位数不够的,要在前面用0补足。

四、小数除法:

1、商的小数点要和被除数的小数点对齐;

2、有余数时,要在后面添0,继续往下除;

3、个位不够商1时,要在商的整数部分写0,点上小数点,再继续除。

4、把除数转化成整数时,除数的小数点向右移动几位,被除数的小数点也要向右移动几位。

5、当被除数的小数位数少于除数的小数位数时,要在被除数的末尾用0补足。

五、一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位……

六、一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……

七、分数加、减法:1同分母分数相加减,把分子相加减,分母不变。2异分母分数相加减,要先通分化成同分母分数,然后再相加减。

八、分数大小的比较:1同分母分数相比较,分子大的大,分子小的小。2异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

九、分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

十、甲数除以乙数(0除外),等于甲数乘乙数的倒数。

四则运算关系

两个规律

一、除法的商不变规律:被除数和除数同时乘或除以相同的数(0除外),商不变。

二、乘法的积不变规律:如果一个因数乘几,另一个因数则除以几,那么它们的积不变。

简便计算

一、运算定律:

二、乘、除法的互化。(小技巧:符号是相反的;两个数相乘得“1”。)

三、求近似数的方法。

①四舍五入法。 ②进一法。 ③去尾法。

四、积与因数、商与被除数的大小比较:

数量关系

三、式与方程

用字母表示数

一、在一个含有字母的式子里,数字和字母、字母和字母相乘时,中间的乘号可以记作“· ”,也可以省略不写。在省略数字与字母之间的乘号时,要把数字写在字母的前面。

二、2a与a2意义不同:2a表示两个a相加,a2表示两个a相乘。即:2a=a+a,a2= a×a。

三、用字母表示数:

①用字母表示任意数:如X=4 a=6

②用字母表示常见的数量关系:如s=vt

③用字母表示运算定律:如a+b=b+a

④用字母表示计算公式:S=ah

方程与等式

一、含有未知数的等式叫做方程。

二、使方程左右两边相等的未知数的值,叫做方程的解。

三、求方程的解的过程,叫做解方程。

四、方程和等式的联系与区别:

五、等式的基本性质(一):等式两边同时加上(或减去)一个相同的数,所得结果仍然是等式。

六、等式的基本性质(二): 等式两边同时乘(或除以)一个不等于零的数,所得结果仍然是等式。

七、列方程解应用题的一般步骤:

①弄清题意,找出未知数并用X表示。

②找出应用题中数量间的相等关系,并列出方程。

③求出方程的解。

④检验或验算,写出答案。

(四)正比例与反比例

比和比例

一、比和比例的联系与区别:

二、比同分数、除法的联系与区别:

三、求比值与化简比的区别:

四、化简比:

①整数比的化简方法是:用比的前项和后项同时除以它们的公约数。

②小数比的化简方法是:先把小数比化成整数比,再按整数比化简方法化简。

③分数比的化简方法是:用比的前项和后项同时乘以分母的最小公倍数。

五、比例尺:我们把图上距离和实际距离的比叫做这幅图的比例尺。

六、比例尺=图上距离︰实际距离 比例尺 = 图上距离 / 实际距离

正比例、反比例

一、正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

二、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

三、正比例与反比例的区别:

第二部份 空间与图形

(一)图形的认识、测量

量的计量

一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。

二、长度单位:

三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、平方米、平方分米、平方厘米。

四、测量和计算土地面积,通常用公顷作单位。边长100米的正方形土地,面积是1公顷。

五、测量和计算大面积的土地,通常用平方千米作单位。边长1000米的正方形土地,面积是1平方千米。

六、面积单位:(100)

七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、立方厘米(毫升)。

八、体积单位:(1000)

九、常用的质量单位有:吨、千克、克。

十、质量单位:

十一、常用的时间单位有:

世纪、年、季度、月、旬、日、时、分、秒。

十二、时间单位:(60)

十三、高级单位的名数改写成低级单位的名数应该乘以进率;低级单位的名数改写成高级单位的名数应该除以进率。

十四、常用计量单位用字母表示:

平面图形【认识、周长、面积】

一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。

二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短无关。角的大小的计量单位是(°)。

三、角的分类:小于90度的角是锐角;等于90度的角是直角;大于90度小于180度的角是钝角;等于180度的角是平角;等于360度的角是周角。

四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。

五、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段的交点叫做三角形的顶点。

六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。

按边分,可以分为等边三角形、等腰三角形和任意三角形。

七、三角形的内角和等于180度。

八、在一个三角形中,任意两边之和大于第三边。

九、在一个三角形中,最多只有一个直角或最多只有一个钝角。

十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、梯形。

十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的长。通过圆心并且两端都在圆的线段叫做圆的直径。

十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就是轴对称图形。这条直线叫做对称轴。

十三、围成一个图形的所有边长的总和就是这个图形的周长。

十四、物体的表面或围成的平面图形的大小,叫做它们的面积。

十五、平面图形的面积计算公式推导:

【1】平行四边形面积公式的推导过程?

①把平行四边形通过剪切、平移可以转化成一个长方形。

②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平行四边形的面积。

③因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。

【2】三角形面积公式的推导过程?

①用两个完全一样的三角形可以拼成一个平行四边形。

②平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它等底等高的平行四边形面积的一半

③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。 即:S=ah÷2。

【3】梯形面积公式的推导过程?

①用两个完全一样的梯形可以拼成一个平行四边形。

②平行四边形的.底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等于平行四边形面积的一半。

③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)h÷2。

【4】画图说明圆面积公式的推导过程

①把圆分成若干等份,剪开后,拼成了一个近似的长方形。

②长方形的长相当于圆周长的一半,宽相当于圆的半径。

③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2。即:S=πr2。

十六、平面图形的周长和面积计算公式:

十七、常用数据:

立体图形【认识、表面积、体积】

一、长方体、正方体都有6个面,12条棱,8个顶点。正方体是特殊的长方体。

二、圆柱的特征:一个侧面、两个底面、无数条高。

三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。

四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。

五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的容积。

六、圆柱和圆锥三种关系:

①等底等高: 体积1︰3

②等底等体积:高1︰3

③等高等体积:底面积1︰3

七、等底等高的圆柱和圆锥:

①圆锥体积是圆柱的1/3,

②圆柱体积是圆锥的3倍,

③圆锥体积比圆柱少2/3,

④圆柱体积比圆锥多2倍。

八、等底等高的圆柱和圆锥:锥1、差2、柱3、和4。

九、立体图形公式推导:

【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面积公式的推导过程)

①圆柱的侧面展开后一般得到一个长方形。

②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。

③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。

④圆柱的侧面展开后还可能得到一个正方形。

正方形的边长=圆柱的底面周长=圆柱的高。

【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?

①把圆柱分成若干等份,切开后拼成了一个近似的长方体。

②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。即:V=Sh。

【3】请画图说明圆锥体积公式的推导过程?

①找来等底等高的空圆锥和空圆柱各一只。

②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三次正好倒完。

③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和它等底等高的圆锥体积的三倍。即:V=1/3Sh。

(二)图形与变换

一、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲线应同步平移,旋转相同的角度。

二、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,三角形的底与高等同时按相同比例放大或缩小。

三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。

(三)图形与位置

一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位置。

二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向。再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置。

小升初数学考试复习指导

一、注重指导学生复习方法,提高复习效率

1、指导学生巧复习

数学学习中概念,公式,计算等等是很枯燥的。俗话说:"熟能生巧。"良好的复习方法是提高复习效率的重要途径。利用一切有效手段充分调动学生复习的主动性,创造性知识和技能。教师指导复习时要做到四点:第一是定调。给出复习“导引单”,学生依“纲”复习,掌握基本的知识和技能。第二是给法。对复习方法给予具体指导。善于抓住重点组织复习。第三是树靶。对复习中的疑难问题展开辨论,审视真伪。第四是立样。对辨论的结果给出是与否的肯定回答,澄清模糊认识,树立正确观点。

2、指导学生定好学习计划

复习前,教师应当认真钻研新《课程标准》和小学数学复习指导说明,让学生明确毕业考试的方向、内容和题形,明确复习内容,指导学生合理分配复习时间,根据每个学生的实际情况,确定复习进度。这样让学生心中有谱,克服盲目性,积极的投入到复习中去。

首先我们用一半的时间指导学生复习课本的内容,重在复习教材中的重点、难点、考点和疑点。方法是教师指导与学生自主复习相结合。学生在复习中注重查漏补缺,教师注重解疑和检查。在复习中注重发现学生在综合练习中出现的问题、及时检查学生知识掌握情况及对知识的运用的能力。并要做到及时反馈、及时补缺补差,把遗漏点降到最低。然后用四分之一的时间进行阶段复习,把内容相关的单元内容分项复习。比如:数的复习,几何知识的复习等等。结合不同的复习内容。确定不同的复习重点难点 分类整理、梳理,强化复习的系统性。这样有利于知识的系统化和对其内在联系的把握,便于融合贯通。做到梳理--训练--拓展,有序发展,真正提高复习的效果。最后用四分之一的时间进行综合复习,,各种题型,等等全面开展训练.在每一次综合复习中学生的能力呈现螺旋上升状态.

3. 指导学生摸索技巧与规律,提高能力

能力测试是现代数学测试的主要方面,如实践能力.创新能力.等。因此在复习过程中,要指导学生定期做一些计算练习及创新练习。知道学生抓住解题的关键条件及应用题中的数学关系,归纳出规律和方法;指导学生排除障碍;对一些看似复杂的难题,引导学生斩枝去叶,找出其核心部分,更快,更准地对题意进行理解,从而有效地完成规定的答题。在这一过程中,提醒学生切勿死记硬背,重在开阔视野,培养实践能力,摸索技巧与规律。

二. 注重研究教法,让复习省时、高效

1 . 准确处理好集中教学与精讲的关系

“集中教学是强化教学,它集中思想、集中时间、集中一切手段与方法,创造环境与条件,突破难点,带动全面”。根据这一原则,我觉得应该摆脱原有知识体系的束缚,打破原有知识结构,重新调整、编辑知识体系,将那些基础知识重新编排、重新组合。通过超前集中、随机集中、综合集中,以及启发、引导、讨论、归纳、综合等一系列双边活动使知识点、热点、重点具体化。这即夯实了基础,突出了重点,又给了学生新的感受。

精讲是指对学生自主学习的积极引导,尤其是针对前面的自主复习活动和讨论过程中思而不解或有误的问题进行讲解,目的在于扫除学生的学习障碍,指引学习的途径,培养正确的学习方法。复习中选择一些恰当、新视觉、最能体现复习内容本质特征、唤起学生思维灵感而引起思维共鸣的例题而施教,达到温故而知新。择例时要做到“三性”。一是准确性;符合新课程标准和教材要求,谨防过深或过偏而加重学生过重的课业负担;二是典范性:体现重要知识点,其有“范例”作用;三是综合性:体现各类知识的横向联系,培养学生综合解题能力。一般而言,复习时应精选学生平时漏缺的知识,精选学生易混淆的知识,精选带有关键性、规律性的.知识。

2、教师要准备好每一堂课

不管是复习基础知识,还是复习重点,难点及要点;也不管是专题训练,还是试卷评讲,教师都要对所授内容认真分析, 精心准备。教师要在课下仔细钻研教材与新《课程标准》,要把握教材内容,善于提炼和归纳教材的知识要点和训练重点,要把握准知识的广度与深度。在复习过程中,我们应重视对教材的使用,切不可抛开教材,大搞所谓的“标准化训练”,盲目追求学生能力的提高,轻视对基础知识的复习。

3. 精心编排练习题

我们应该把这一点作为重要的一点提出来,我觉得精心编排练习题是实施教学论断和反馈的好办法。要坚持每天布置适量的习题作业,从作业中发现问题,并且引导学生集体讨论,利用课余时间针对问题进行个别纠正,这一方法行之有效。较好地贯彻了“因才施教",易于操作,效果明显,复习中配以灵活多变的训练,能达到巩固知识、理解规律、强化记忆、灵活应用知识的目的。首先在训练的内容上要活。要选择内容新颖、规律隐藏、思路灵活的习题训练,创造新的思维意境。其次,在训练层次上要活。采取巩固训练、模仿训练、变式训练和综合训练等灵活方式。再次在训练形式上要活。加强“一题多变”的训练。尽可能覆盖知识点、网络知识线、扩大知识面,增强应变能力。加强“一题多解”的训练,寻找多种解题途径,择其精要解题方法,逐步提离学生的创新能力。练习题不在于多,一道好的题目,往往能“牵一发而动全身”,起到事半功倍的作用。这里指的练习题也不仅仅指动笔的书面作业题,还包括动口的讨论题和动手的实践操作题等。要在众多的复习资料中挑选和重心组织质量高、针对性较强的题目(题组),要重视根据教学实际和当前的教改形势创造设计一些新颖的题目。

4,充分相信学生,放手让学生自主整理复习,及时评价

复习课必须针对知识的重点、学习的难点、学生的弱点,引导学生按一定的标准把有关知识进行整理、分类、综合,这样才能搞清楚来龙去脉。教学时应放手让学生整理知识,形成各异、互助评价,开展争辨。这样有利于主体性的发挥,学生主动参与,体验成功,同时也可以培养他们的概括能力。在进行阶段性复习时,结合每一单元的内容进行专项训练,采用自主复习的形式,反复巩固基础知识,强化运用能力,提高解题技巧和解题速度。学生不但可以自己查阅资料,收集信息,独立式学习,还可以自由选择学习内容与方式,自己控制学习进度和方向。自始至终积极参与活动,成为真正意义上学习的主人。

92306