高分网 > 小升初 > 小升初辅导 >

小升初衔接:辅导孩子学习的七大要点

时间: 李金 小升初辅导

如果孩子还没有形成良好的学习习惯,对学习没有兴趣和信心,基础不好,那么在一段时间之内下功夫辅导孩子是很有必要的。即使孩子基础不错,初步形成了习惯,兴趣和信心还好,如果父母善于辅导,那么适时地帮助也可以锦上添花。所以,学会辅导孩子还是家长需要掌握的一门基本功。

一、有一个良好的学习氛围

如果孩子总是面对严厉的、呵斥他的父母,他也不会感受到你那发自内心的爱,他对你所说的和所要求的都会感到厌倦。大部分人,不仅仅是孩子,面对呵斥自己的人总会有一种天生的反感。他的反感情绪也许会因为害怕而有所克制,但这种情绪却不利于他接受任何知识。当孩子被训斥之后,紧张沮丧,头脑可能一片空白,反而更加不灵光了。

相反,如果孩子能处于一种友好、亲昵、鼓励的气氛中去学习,他不但会对父母有很强的信任感,学习的`效果也会好得多。

另外,监工辅导方式,也是很多家长需要注意的。辅导不是给孩子施压,不是一直盯着、监督他,而是适时地来帮助孩子,和孩子一起来体验做题的乐趣,并用轻松愉快的心情影响孩子,有了好心情,孩子做作业,会更好。

二、讲解题目不是“讲”而是探讨

很多家长给孩子讲题,真的是在“讲”,能让孩子听得瞌睡了。这是因为缺乏孩子的参与互动,不是启发式的辅导,只是那么讲下来,孩子自然听得乏味。我辅导上初中的小赵分析一道题目的时候,会把题目分成很多步骤,每一步骤先引导他去想怎么做,他不会做的时候,我就引导提醒一下,最好由他自己想到这一步骤如何解决。遇到理解不清晰的知识点,我们再回头看书、探讨,力争把它搞清楚、透彻。最终解题步骤,如果孩子自己不能做出来,也要引导到只剩一层窗户纸,而且一定要由孩子亲自捅破,这样他会有成就感,增加兴趣和信心。其实每一道步骤,最好都是由孩子亲自捅破这层窗户纸。

传说中的循循善诱,大概就是这个意思。这样的互动,孩子会觉得有趣味;这样的方式,会让孩子有成就感。兴趣,通过每一道题的讲解,会逐渐激发出来。

三、错了也要鼓励

辅导孩子,最忌讳的是面对孩子做错了的题目火冒三丈,怒其不争。辅导题目的时候,善于发现孩子好的方面经常鼓励他,而不是发现孩子的问题时刻批评、打击他。两种不同的方式对孩子的信心和兴趣的影响大不相同啊。当孩子做得好的时候,毫不客气地表扬、鼓励更是需要的。信心,有的时候通过父母善于发现孩子的进步、优点,并真诚鼓励来逐步增强的。

四、引导孩子体会题目的妙处

很多家长痛恨目前教育的弊端,但教育改革进行了这么多年,也不是一无是处的,现在的很多题目是经过精心设计的,仔细分析还是颇有趣味的。当孩子抱怨作业多的时候,尽管也可以赞同,但是与其抱怨,不如静下心来,和孩子一起体味做题的乐趣。

作业就在那里,是抱怨还是尝试去体味做题的乐趣,一个认知的改变,心情大不一样。说到底,这些题目相当于智力游戏。很多父母总说作业是不得不做的事情,而不去引导孩子体会做题的乐趣,真是南辕北辙啊!

五、不做权威鼓励孩子探索

从知识的角度来看,父母也许是孩子的权威。但是,即使是权威,也最好蹲下来,不做权威,鼓励孩子不迷信,这样会增强信心。

别看一二年级的题目,我辅导时偶尔也会搞错,此时大大方方地承认,不去树立权威形象,会使孩子敢于去探索。或者有时也可以偶尔装着不会,让孩子给自己讲,此时她一定会很得意。只有把自己放低,孩子才能站起来。

六、辅导的目的是为了不辅导

不同阶段适用不同的方法。开始孩子学习比较困难的时候,要多辅助,使之觉得简单。当孩子能力基本具备的时候,要多鼓励他自己完成,稍作点拨就可以了。

辅导的目的也是为了以后不辅导,帮助孩子形成自己解决问题的兴趣、信心、方法,所以,重在方法,重在启迪,知识往往不是最重要的。这样孩子需要的辅助越来越少。

七、帮助孩子学习变得轻松

如果孩子能力可以,就让他去挑战困难;如果能力不足,就帮助孩子让学习变得容易轻松些。这就是传说中的“因材施教”吧。

有一个孩子的基础较差,学习又困难,习惯兴趣都没有培养好。有一次数学有三道题已不会做,爸爸首先让他自己思考怎么做,过了好长时间,他已也不得法,爸爸再给他讲解,直到晚十点整才做完。

我认为目前爸爸的要求稍微高了一些,导致作业时间过长,此时可以直接给孩子讲解。而如果让他自己做,可能觉得困难,加重了对作业的畏难情绪,不利于兴趣、信心、习惯的培养。讲解的时候可以引导孩子思考,最后的窗户纸由他捅破,这样他有成就感和兴趣。在学习困难的时候以辅助孩子作业完成得好为主要目标,这样老师表扬他有进步,他会有信心,兴趣也会大。早些做完,孩子也可以好好玩,体会到早做完的好处。独立自主的问题可以后期逐渐培养。

小升初衔接:七大准备抚平入学焦虑

一是应对学习强度的准备,小学采用的是细嚼慢咽式的教学。可到了初中,所学内容每一天都是新的,节奏加快,教学容量加大,想请假都请不起。学生到了初中,要学会对相对枯燥的学科感兴趣。

二是语文能力的准备。这里的语文能力,不仅仅停留在把语文学好,因为初中的数学、科学题很多是用文字来表述的,如果没有好的语文阅读能力,你很可能连题目都读不懂。

三是厚积薄发的准备。无论你在小学是多么叱咤风云的人物,请在初中学会低调做人,厚积薄发。

四是独立自主能力。要特别劝劝爸爸妈妈,别再把孩子当做长不大的宝贝,他们忘记拿课本了,你还专门请假替孩子回家拿,再送到学校。你们一定要狠狠心,学会让孩子丢这个脸。

五是自律能力。很多人都听过这句话:“好学生都是自律出来的。”爸爸妈妈在非常投入地看《中国好声音》,你明天要参加考试,能不能控制住自己不去看?这就是考验你的自律能力,

六是要有良好的信念。初中生了,不能还是活在别人的要求中,要有自己的主见。这里和大家说件我女儿的趣事。去年我和女儿参加了一个北京游亲子团,经过北大门口时,导游开玩笑地问,车上哪位小朋友想进北大的?结果我女儿说:“妈妈,我想做北大校花。”当时一车子的人都笑了。我觉得女儿有点口出狂言,但这个想法挺好的,至少说明有自己的信念。

七是做好学习习惯的准备。像养成写作业不用橡皮的习惯、养成每天把觉得最重要的知识点理出“知识树”的习惯。

小升初数学衔接的重要性及方法

小学数学与初中数学的区别

1.学习内容与学习时间

小学六年主要学习算术数(正有理数和零)的加减乘除四则运算。初中三年要学习用字母代替数;数扩展到有理数、实数;整式、分式、无理式等的加减乘除;一元一次方程、一元二次方程及方程组,一元一次不等式及不等式组;正比例函数、一次函数和二次函数;平面几何;概率统计初步等。将内容和时间一对比,明显初中数学的课堂教学容量大大增加。

2.能力要求

小学数学,重书写规范、形象思维和运算能力。初中数学侧重于培养学生的数学能力,包括计算能力、自学能力、分析问题与解决问题的能力、抽象逻辑思维的能力等。

3.学习方法

小学主要是模仿,从特殊到一般,机械记忆居多,听老师的要求,被动学习为主。初中生要独立思考,寻根究底,主动学习。

初中数学学习三部曲

1、要学会听课,积极锻炼计算能力

学生要学会听课,学会做笔记,自己分清知识的重点。初中数学学习计算量比小学增大了不少,需要学生快速准确地用口算或者心算完成。

2、要培养空间想象能力

数学的基础知识主要包括计算、空间想象、数量关系、应用公式等。小学生的抽象思维较弱,对符号、数字、图像等不够敏感,而这恰恰是初中数学学习所需要的。

3、要变“数”为“式”

初一数学开始涉及代数式,而小学数学多是算术题,面对这期间的断层。学生可以在暑期进行预习巩固,适应代数式学习。

知识点:

1.数轴

(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

(2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

(3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

2.相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

3.绝对值

1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.

2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)

4.有理数大小比较

1.有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。

规律方法·有理数大小比较的三种方法:(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.(3)作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a

5.有理数的减法

有理数减法法则减去一个数,等于加上这个数的相反数。即:a﹣b=a+(﹣b)

方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);

注意:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律。减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算。

6.有理数的乘法

(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

(2)任何数同零相乘,都得0。

(3)多个有理数相乘的法则:①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.②几个数相乘,有一个因数为0,积就为0。

(4)方法指引①运用乘法法则,先确定符号,再把绝对值相乘.②多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单.

7.有理数的混合运算

1.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。

2.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化。

有理数混合运算的四种运算技巧:(1)转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.

(2)凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.

(3)分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.

(4)巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.

8.科学记数法—表示较大的数

1.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a<10,n为正整数)

2.规律方法总结①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n。

②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号.

9.代数式求值

(1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值。

题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.

10.规律型:图形的变化类

首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解。探寻规律要认真观察、仔细思考,善用联想来解决这类问题。

11.等式的性质

1.等式的性质性质1 等式两边加同一个数(或式子)结果仍得等式;性质2 等式两边乘同一个数或除以一个不为零的数,结果仍得等式。

2.利用等式的性质解方程利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化.

应用时要注意把握两关:①怎样变形;②依据哪一条,变形时只有做到步步有据,才能保证是正确的.

12.一元一次方程的解

定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。把方程的解代入原方程,等式左右两边相等。

13.解一元一次方程

1.解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。使方程逐渐转化为ax=b的最简形式体现化归思想。将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。

14.一元一次方程的应用

1.一元一次方程解应用题的类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题; (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).

2.利用方程解决实际问题的基本思路首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

列一元一次方程解应用题的五个步骤(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.(3)列:根据等量关系列出方程.(4)解:解方程,求得未知数的值.(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.

15.正方体相对两个面上的文字

(1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象.

(2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.

(3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面.

16.直线、射线、线段

(1)直线、射线、线段的表示方法①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

(2)点与直线的位置关系:①点经过直线,说明点在直线上;②点不经过直线,说明点在直线外。

17.两点间的距离

(1)两点间的距离:连接两点间的线段的长度叫两点间的距离。

(2)平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离.可以说画线段,但不能说画距离。

18.角的概念

(1)角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边。

(2)角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示。

(3)平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角。

(4)角的度量:度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″。

19.角平分线的定义

从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线。①∠AOB是∠AOC和∠BOC的和,记作:∠AOB=∠AOC+∠BOC.∠AOC是∠AOB和∠BOC的差,记作:∠AOC=∠AOB﹣∠BOC。②若射线OC是∠AOB的三等分线,则∠AOB=3∠BOC或∠BOC=13∠AOB。

20.度分秒的运算

(1)度、分、秒的加减运算。

在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60。

(2)度、分、秒的乘除运算①乘法:度、分、秒分别相乘,结果逢60要进位。②除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除。

21.由三视图判断几何体

(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状。

(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:

①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;

②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;

③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;

④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法。

92307