高分网 > 通用学习方法 > 学习方法 >

初中生数学学习方法总结

时间: 如英2 学习方法

  适合学生的学习方法,可以使学生事半功倍,轻松自如。今天学习啦小编就与大家分享:初中生数学学习方法总结,希望对大家的学习有帮助!

  初中生数学学习方法总结一

  任何学问都包括知识和能力两个方面,在数学方面,能力比具体的知识要重要的多。当然,我们也不能过分强调能力,而忽视知识的学习,我们应当在学习一定数量知识的同时,还应该学会一些解决问题的能力。

  能力是什么?心理学中是这样定义的:能力是指直接影响人的活动效率,使活动顺利完成的个性心理特征。在数学里,我认为,能力就是解决问题的才智。

  一、怎样才能提高自己的解题能力

  首先是模仿。解题是一种本领,就像游泳、滑雪、弹钢琴一样,开始只能靠模仿才能够学到它。

  其次是实践。如果你不亲自下水游泳,你就永远也学不会游泳,因此,要想获得解题能力,就必须要做习题,并且要多做习题。

  再次,要提高自己的解题能力,光靠模仿是不够的,你必须要动脑筋。例如,对于课本的定理的证明,例题的解法、证法能读懂听懂还不够,你必须明白人家是怎样想出那个解题方法的,为什么要那样解题?有没有其它的解题途径?我认为这才是最重要的东西。如果你真正领会了人家的解题思路,那么在此基础上你就有所创新,就能够提高你的解题能力。

  二、学习数学应注意培养什么样的能力

  1运算能力。2空间想象能力。3逻辑思维能力。4将实际问题抽象为数学问题的能力。5形数结合互相转化的能力。6观察、实验、比较、猜想、归纳问题的能力。7研究、探讨问题的能力和创新能力。

  三、提高数学解题能力的关键是什么?

  灵活应用数学 思想 方法是提高解题能力的关键,我们的先辈数学家们,已经为我们创造出了很多的数学 思想 方法,我们应该很好地体会它,理解它,并且要灵活地应用它。对于初中数学主要是以下四类数学 思想 (所谓 思想 就是指导我们实践的理论方法,这里主要指想法或方法):1转化 思想 。2方程思想。3形数结合思想。4函数思想。5.整体思想6分类讨论思想.7统计思想。只要我们能够深入地理解上述思想方法,并能灵活地应用到具体的解题实践中,就能极大地提高你的解题能力。

  初中生数学学习方法总结二

  数学是研究现实世界的空间形式和数量关系的科学。数学学习是中小学生增长学习能力和创造能力的广阔天地。而数学学习方法指导是教育者通过一定的教育途径对学习者进行学习方法的传授、诱导、诊治,使学习者掌握科学的学习方法并灵活运用于学习之中,逐步形成较强的自学能力的方法。实践证明忽视了“学”,“教”就失去了针对性,教学的高低,在很大程度上取决于学生的学习态度和学习方法。有些学生因不会学习或学习方法不当而成绩逐渐下降,久而久之失去学习信心和兴趣,开始陷入厌学的困境,这也往往是学生明显出现“两极分化”的原因。因此重视对学生数学学习方法的指导是非常必要的。在新课程背景下,如何让初一新生感到数学好学,把学数学当成一种乐趣,真正做初中数学的小主人。

  首先同学们要学会学习,要围绕老师讲述展开联想,理清教材文字叙述思路,听出教师讲述的重点难点,跨越听课的学习障碍,不受干扰,在理解基础上做点笔记。其次要先预习后听课,先看书后做作业,先理解再输入大脑识记。再次要会制定学习计划,会利用时间充分学习,会进行学习小结,会提出问题进行讨论学习,会阅读参考资料扩展学习。还要调试学习心理问题,刚开始学习要有决心,碰到困难有信心,研究问题要专心,反复学习有耐心,向别人学习要虚心。还要开动脑筋,积极思考,多方面增加感性知识,熟记一些必需知识,发挥听觉容量的最大潜力。本人想就以下几个问题从四个方面做些探讨。

  一、指导学生读

  目前初中新生学习数学存在一个严重的问题就是不善于读数学书,他们往往是死记硬背。比如在学平方根概念时,同学们都知道“一般地,如果一个数的平方等于a,那么这个数叫做a的平方根。”“一个正数有正、负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。”可是在做判断题时,4是16的平方根( );16的平方根是4( )。这两道判断题前面一道总是做不对,后面一道倒是都能做全对。因为他们更熟悉“一个正数有两个平方根,却不能很好的理解平方根的概念,就因为没好好读懂平方根概念,这使初一新生自学能力和实际应用能力得不到很好的训练。因此,重视读法指导对提高初中新生的学习能力是至关重要的。在教学过程中,教师应指导学生学会读书的方法,做到眼到、口到、心到、手到。新学一个章节内容,先粗粗读一遍,即浏览本章节所学内容的枝干,然后一边读一边勾,粗略懂得教材的内容及其重点、难点所在,对不理解的地方打上记号。然后细细的读,即根据每章节后的学习要求,仔细阅读教材内容,理解数学概念、公式、法则、思想方法的实质及其因果关系,把握重点、突破难点。再次带着研究者的态度去读,即带着发展的观点研讨知识的来龙去脉、结构关系、编排意图,并归纳要点,把书读“懂”,并形成知识网络,完善认识结构,当学生掌握了这三种读法,形成习惯之后,就能从本质上改变其学习方式,提高学习效率了。

  二、指导学生听

  初中新生往往对课程增多、课堂学习容量加大不适应,顾此失彼、精力分散,使听课效率下降,因此,重视听法指导,使他们学会听,是提高学习效率的关键。 数学教学中,首先应培养学生学习思想专注、专心听讲,激活其原认识结构,并使学生的信息接受与教师的信息输出协调一致,从而获得最佳学习效果。其次,要培养学生会听,注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,让学生抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能使其由“听会”转变为“会听”。

  三、指导学生思考

  数学学习是学习者在原有数学认知结构基础上,通过新旧知识之间的“同化”或“顺应”,形成新的数学认知结构的过程。由于这种“同化”或“顺应”的工作最终必须由每个学习者相对独立地完成。因此,在教学过程中老师对学生要进行思法指导,教师应着力于以下几点:①从学生思维的“最近发展区”入手来开展启发式教学,培养学生积极主动思考,使学生会思考。②从创设问题情境来开展探索式教学,培养学生追根究底的思考习惯,使学生学会深思;③从挖掘“问题链”来开展变式训练,培养学生观察、比较、分析、归纳、推理、概括的能力,使学生学会善思;④从回顾解题策略、方法的优劣来开展评价,培养学生去分析,使学生学会反思。还有就是我们在教学过程中还应善于暴露思维过程,留下一定的思维时间与空间,使学生“思在知识的转折点、思在问题的疑难处、思在矛盾的解决上,思在真理的探索中”,使学生达到融会贯通的境界。

  四、指导学生写

  初一新生在解题书写上往往存在着条理不清,逻辑混乱等问题。比如在学习乘、除、乘方的混合运算的运算顺序时,下列这些错误学生很容易犯,(–3)2=–32,(2×3)2=2×32,(3\4)2=32\4等等。还有在学习有理数的混合运算时会出现这样的情况,8-8×(3\2)2=0×9\4=1,这主要是我们在教学中不大重视对学生进行写法指导。在教学中老师要及时纠正学生易犯的错误。比如①要教会学生将文字语言转化为数学符号语言,还要注意数学符号中数学演算的前提条件;②要将学生在推理的同时学会书写表达,让学生在反复训练中熟练掌握常用的书写格式;③要训练学生根据已知条件来分析作图,正确地将文字语言转化为直观图形,以便更好的利用数形结合解决问题。这样经过多形式、多层次去强化训练,让学生过好分析关、书写关,使学生在注意严谨性、逻辑性的过程中形成正确的书写习惯。

  五、指导学生记

  教学生如何克服遗忘,以科学的方法记忆数学知识,对学生来说是很有益处的。初中新生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成分较多,理解记忆的成分较少,这就不能适应初中学生的新要求。因此,重视对学生进行记忆方法指导,这是初中数学教学的必然要求。教学中,首先要重视改革教学方法,抛弃满堂灌,以避免学生“消化不良”,其次要善于结合数学实际,教给学生相应的方法。比如①理解记忆法,因为理解的东西才能记得准,记得牢,所以必须“先懂后记”。② 简化记忆法,简化记忆方法分两类,一类是把文字“浓缩”之后记忆,另一类是用字母符号表达抽象记忆。③形象记忆法,内容形象、直观、记忆就深刻、难忘,把知识形象化能帮助记忆。④对比记忆法,“有对比才有鉴别”把相类似的问题放在一起找出区别与联系,分清异同,增强记忆效果。⑤口诀记忆法,将数学知识编成“顺口溜”,生动有趣,印象深刻,不易遗忘。⑥系统记忆法,建立一个完整的知识体系,便于整体上掌握知识,可用关系图来帮助记忆。此外,我们还应该让学生明确各种记忆方法。

  总之,对初中新生数学学习方法的指导,必须与教学改革同步进行,协调开展,持之以恒。要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法.同时要理论联系实际,因人而异,因材施教,充分调动学生的学习积极性。

  初中生数学学习方法总结三

  由于初一学生的智力水平不一,数学基础参差不齐,所以造成数学学习上的两极分化。如何消除学习数学的各种障碍,大面积提高数学成绩,笔者说说个人的浅见。

  一、掌握预习学习方法,培养数学自学能力

  预习就是在课前学习课本新知识的学习方法,要学好初中数学,首先要学会预习数学新知识,因为预习是听好课,掌握好课堂知识的先决条件,是数学学习中必不可少的环节。

  数学的预习主要是看数学书,这需要我们既要动脑思考,还要动手练习。数学预习可以有“一划、二批、三试、四分”的预习方法。

  以“方程和它的解”一节为例来说明这种预习方法。“一划”就是圈划知识要点,和“已知数”、“未知数”、“方程的解”、“解方程”几个基本概念,以及例1、例2下面“注意”提示内容都要圈画出来。“二批”就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方,对例1中判定y2+2=4y-1与2x2+5x+8是否是方程,为什么?说不出理由,这时我们可以把疑问批在此二题旁。“三试”就是尝试性地做一些简单的练习,检验自己预习的效果。“四分”就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。例如通过预习这节内容,我们可以列出以下知识要求:(1)什么是已知数,什么是未知数,什么是方程,什么是方程的解,什么是解方程。(2)会判别一个式是否是方程,(3)会列一元一次方程,(4)会检验一个数是否是某一个方程的解。

  二、掌握课堂学习方法,提高课堂学习效果

  课堂学习是学习过程中最基本,最重要的环节。数学课学习要坚持做到“五到”即耳到、眼到、口到、心到、手到。

  耳到:就是在听课的过程中,既要听老师讲的知识重点和难点,又要听同学回答问题的内容,特别要注意听自己预习未看懂的问题。

  眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来。

  口到:就是自己预习时没有掌握的,课堂上新生的疑问,都提出来,请教老师或同学。

  心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。数学课堂学习有时是掌握例题的解法,有时是学会运用公式,

  关键是理解并能融汇贯通,灵活使用。例如,证明任意三角形的中位线等于底边的一半,老师讲了例题,启发同学们思考,许多同学联想到平行四边形的性质与平行线辅助线的作法,很快可以思考出下列四种证法:

  对于老师讲的新概念,应抓住关键字眼,变换角度去理解。如命题“只有零和1的算术平方根是它本身”,可以改写为“如果一个数的算术平方根是它本身,那么这个数是零或1”。

  手到:就是在听,看,思的同时,要适当地动手做一些笔记。

  三、掌握练习方法,提高解答数学题的能力

  数学的解答能力,主要通过实际的练习来提高。

  数学练习应注意些什么问题呢?

  1.端正态度,充分认识到数学练习的重要性。不论是预习练习,课堂练习,还是课后作业,复习练习,都不能只满足于找到解题方法,而不动手具体练习一练。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。

  2.要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。

  3.要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。

  4.细观察、活运用、寻规律、成技巧。

  例如下列一组一元一次方程练习,通过细致观察,会获巧解。

  以上三题应精心观察去括号与去分母的技巧与注意事项。

  以上两题要细心观察运用整体思想灵活变形,正确迅速解题。

  本题若不观察,按常规解法势必繁冗,联想到方程根的概念,可获精巧解答。

  又如下题,若大胆联想,活用公式,转具体为抽象,用字母代替数,则可得巧解。

  已知: A=199301981×198101993,B=199301982×19810992,试比较A与B的大小。

  解:设x=199301981,y=198101992

  则: A=x(y+1)=xy+x,B=y(x+1)=xy+y

  ∵x>y,∴A>B.

  四、掌握复习方法,提高数学综合能力。

  复习巩固应注意掌握以下方法。

  1.合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,无论当天作业有多少,多难,都要巩固复习,一定要克服不看书复习就做作业,做不起再翻书,把书当成工具书查阅的不良习惯。

  2.广泛采用综合复习方法,即通过找出知识的左右关系和纵横之间的内在联系,从整体上提高,这种方法既适用于平时复习更适用于单元复习、期中复习、期末复习和毕业复习。

  综合复习具体可分“三步走”:首先是统观全局,浏览全部内容,通过唤起回忆,初步形成完整的知识体系印象,其次是加深理解,对所学内容进行综合分析,最后是整理巩固,像华罗庚所说:“找另一条线索把旧东西重新贯穿起来”,形成完整的知识体系。

  3.重视实际应用的复习方法。数学复习不能像文科复习主要靠背记,应通过“完成实际作业”来实现对数学的复习,教育家明确指出,在数学课程中“应当注意把知识的实际应用作为重要的复习方法”,例如复习一元二次方程可做以下四道题。

  (1)方程3x2-5x+a=0的一根大于-2而小于0,另一根大于1而小于3。求实数a的取值范围。

  (2)方程2mx2-4mx+3(m-1)=0有两个实数根,确定实数m的范围。

  (3)方程x2+(m-2) x+5-m=0的两根都大于 2,确定实数m的范围。

  (4)已知三角形两边长a、b是方程2x2-mx+2=0的两根,且c边长为8,求实数m的范围。

  通过练习,从正、侧、反面三种不同角度理解一元二次方程的知识,便于抓住本质强化记忆。正面复习一元二次方程的概念;用判别式讨论根的性质;根与系数关系公式,把一元二次方程用函数的知识去理解,侧面从二次函数的角度来解决有关方程与不等式的问题,经过尝试失误,找出错误原因和解决办法,从反面留下深刻印象。

  4.广览博集,突破薄弱环节的复习方法。

  要提高数学综合能力,还应突破自己知识的薄弱环节,一是多在薄弱环节上下功夫,加强巩固好课本知识,二是适当阅读这些课外读物,收集整理,广览博集,突破这一薄弱环节,这样,有利于从整体上提高数学综合能力。

26666