数学学习方法指导
数学学习方法指导,简称数学学法指导,是“学会学习”的一个重要组成部分.目前,数学学法指导问题是数学教学理论研究和实践中的一个重要课题.因此,笔者想就此问题从四个方面做些探讨,以抛砖引玉. 一、数学学法指导的意义
1.数学教学方法改革的需要
长期以来,数学教学改革偏重于对教的研究,但是对于学生是如何学的,学的活动是如何安排的,往往较少问津.现代教学理论认为,教学方法包括教的方法和学的方法,正如前苏联教学论专家巴班斯基指出的那样:“教学方法是由学习方式和教学方式运用的协调一致的效果决定的.”即教学方法是受教与学相互依存的教学规律所制约的.
当前,教学方法改革中的一个新的发展趋向,就是教法改革与学法改革相结合,以研究学生科学的学习方法作为创建现代化教学方法的前提,寓学法于教法之中,把学法研究的着眼点放在纵向的教法改革与横向的学法改革的交汇处.从这个意义上讲,学法指导应该是教学方法改革的一个重要方面.
2.培养学生学习能力的需要
埃德加富尔在《学会生存》一书中指出:“未来的文盲不再是不识字的人,而是没有学会怎样学习的人.”“教会学生学习”已成为当今世界流行的口号.前苏联教育家赞可夫在他的教学经验新体系中,把“使学生理解学习过程”作为五大原则之一.就是说,学生不能只掌握学习内容,还要检查、分析自己的学习过程,要学生对如何学、如何巩固,进行自我检查、自我校正、自我评价.学法指导的目的,就是最大限度地调动学生学习的主动性和积极性,激发学生的思维,帮助学生掌握学习方法,培养学生学习能力,为学生发挥自己的聪明才智提供和创造必要的条件. 3.更好地体现学生为主体的需要
我国著名教育家陶行知先生早就指出:“我以为好的先生不是教书,不是教学生,乃是教学生学.”美国心理学家罗斯也说过:“每个教师应当忘记他是一个教师,而应具有一个学习促进者的态度和技巧.”专家学者精辟地阐述了学生在整个教学过程中始终是认识的主体和发展的主体思想,强调了学法指导中以学生为主体的重要性.教师在教学过程中的作用,只是为学生的认识的发展提供种种有利的条件,即帮助、指导学生学习,培养学生自学的能力和习惯.
二、数学学法指导的内容
1.形成良好的非智力因素的指导
主要包括学习需要、动机、兴趣、毅力、情绪等良好的非智力因素形成的指导.
2.学习方法体系的指导
(1)指导学生形成拟定自学计划的能力.
(2)指导学生学会预习的能力.要求学生边读边思边做好预习笔记,从而能带着问题听课. (3)指导学生读书的方法.
(4)指导学生做笔记、写心得、绘图表的方法,使他们能够把自己的思想表达出来. (5)指导学生有效的记忆方法和温习教材的方法.
3.学习能力的指导
包括观察力、记忆力、思维力、想象力、注意力以及自学、表达等能力的培养.
4.应考方法的指导
教育学生树立信心,克服怯场心理,端正考试观.要把题目先看一遍,然后按先易后难的次序作答;要审清题意,明确要求,不漏做、多做;要仔细检查修改.
5.良好学习心理的指导
教育学生学习时要专注,不受外界的干扰;要耐心仔细,独立思考,不抄袭他人作业;要学会分析学习的困难,克服自卑感和骄傲情绪.
三、数学学法指导的原则
数学学法指导的原则是根据学生的学习任务、学习规律和学习经验,对学生数学学习基本法则.它是用来指导和改进学生学习,提高学习效率、质量的准则.
就目前数学教学研究情况和学生学习经验来看,笔者以为有以下几条原则.
1.系统化原则
要求学生将所学的知识在头脑中形成一定的体系,成为他们知识总体中的有机组成部分.在教和学中,要把概念的形成与知识系统化有机联系起来,加强各部分学习基础知识内部和相互之间,以及数学与物理、化学、生物之间的逻辑联系;注意从宏观到微观揭示其变化的内在本质.并在平时就要十分重视和做好从已知到未知,新旧联系的系统化工作,使所学知识先成为小系统、大结构,达到系统化的要求.
2.针对性原则
就是针对数学学科的特征及学生的实际特点进行指导,这是学法指导的最根本原则.首先,要针对学生的年龄特征进行指导.一般来说,初中生知识面较窄,思维能力较差,注意力不持久,学习技能不很熟练,因此,对初中生的指导要具体、生动、形象,多举典型事例,侧重于具体学习技
能的培养,使学生养成良好的学习习惯.高中生则不同,知识面较广,理解力较强,因此,可向学生介绍一些学习数学知识的方法,侧重于学习能力的培养,开设学法课.其次,要针对学生的类型差异进行指导.学生的类型大致有四种:第一种,优秀型.双基扎实,学习有法,智力较高,成绩稳定在优秀水平.第二种,松散型.学习能力强,但不能主动发挥,学习不够踏实,双基不够扎实,学习成绩不稳定.第三种,认真型.学习很刻苦认真,但方法较死,能力较差,基础不够扎实,成绩上不去.第四种,低劣型.学无兴趣,不下功夫,底子差,方法死,能力弱,学习成绩差,处于“学习脱轨”和“恶性循环”状态.对不同类型的学生,指导方法和重点要不同.对第一种侧重于帮助优生进行总结并自觉运用学习方法;对第二种主要解决学习态度问题;对第三种主要解决方法问题;对第四种主要解决兴趣、自信心和具体方法问题.
3.实践性原则
学习方法实际上是一种实践性很强的技能,要使学生真正掌握学习方法,就必须进行方法训练(即实践),使之达到自动化、技巧化的程度.指导中切忌单纯传授知识,满堂灌,学而不用.进行方法训练时,要与具体内容相结合,使学生在具体运用中掌握学习方法.
4.实用性原则
学法指导的最终目的是用较少的时间学有所得、学有所成,改正不良方法,养成良好的学习习惯.所以应以常规方法为重点,指导时多讲怎么做,少讲为什么,力求理论阐述深入浅出,通俗易懂,增强可读性,便于学生接受.注意穿插某些重要的单项学习法,如怎样记笔记,怎样积累资料,怎样使用工具书,怎样阅读,等等.
5.自主性原则
指导学生优化学习方法,其着眼点在于发挥学生在学习中的主观能动作用,确保学生的主体地位.为此,教师在组织教学的过程中,应力求贯彻学生自主原则,积极创造条件,让学生有尽可能多的时间和余地进行自学,独立地思考和解决问题.
6.及时巩固原则
及时巩固原是学习和发展的需要.例如,数学符号、概念、定理、公式等是数学特有的表现形式.教学实践表明,数学符号、概念、定理、公式没有学会和记住,是造成学生学习质量不高、学习发生困难的一个重要原因,只有及时巩固,才能迁移应用.
四、数学学法指导的实施
数学学法指导是一个由非智力因素、学习方法、学习习惯、学习能力和学习效果组成的动力系统、执行系统、控制系统、反馈系统的整体,对其中任何一个系统的忽视,都会直接影响学法指导
整体功能的发挥.因此,应以系统整体的观点进行学法指导,以指导学生加强学习修养,激发学习动机,指导学生掌握和形成具有自己个性特点和科学的学习方法,指导学生养成良好的学习习惯和提高学习能力及效果为其内容及范围.
1.形成良好的非智力因素的指导
非智力因素是学法指导得以进行的动力.积极的非智力因素,可以使学生学习的积极性长盛不衰.我们应把培养学生良好的非智力因素放在首位.具体可从以下几个方面入手:
(1)激发学习动机,即激励学生主体的内部心理机制,调动其全部心理活动的积极性.首先,以数学的广泛应用,激发学生学好数学的热情.其次,以我国在数学领域的卓越成就,培养学生的爱国主义思想,激发学习动机.再次,挖掘数学中的美育因素,使学生受到美的熏陶.此外,教师还可以在教学过程中,根据教学的内容,选用生动活泼、贴近学生生活的教学方法引起学生的兴趣,使学生产生强烈的求知欲;教师还可以运用形象生动、贴近学生、幽默风趣的语言来感染学生;教师还可以安排既严谨又活泼的教学结构,形成热烈和谐的氛围,使学生积极主动、心情愉快地学习,充分调动学生学习的积极性和主动性.
(2)锻炼学习意志.心理学家认为:“意志在克服困难中表现,也在经受挫折、克服困难中发展,困难是培养学生意志力的‘磨刀石’.”因此,数学教学中要经常给学生安排适当难度的练习题,让他们付出一定的努力,在独立思考中独立解决问题(但注意难度必须适当,因为太难会挫伤学生的信心,太易又不能锻炼学生的意志).
(3)养成良好的学习习惯.第一,针对不同层次的学生提出不同的要求;第二,反复训练,持之以恒;第三,树立榜样,激发自觉性;第四,评价表扬,鼓励发展;第五,建立学习规章制度,严格管理;第六,创造良好学习环境,如搞好校风、学风、教风、班风建设.
2.数学学习方法内化的指导
(1)正确认识数学学习方法的重要性.启发学生认识到科学的学习方法是提高学习成绩的重要因素,并把这一思想贯穿于整个教学过程之中.如,结合教材内容,讲述一些运用科学学习方法获得成功的例子,召开数学学法研讨会,让学习成绩优秀的同学介绍经验,开辟专栏进行学习方法的讨论,等等.
(2)指导学生掌握科学的数学学习方法.
①合理渗透.在教学中要挖掘教材内容中的学法因素,把学法指导渗透到教学过程中. ②相机点拨.教师要有强烈的学法指导意识,结合教学抓住最佳契机,画龙点睛地点拨学习方法.
③及时总结.在传授知识,训练技能时,教师要根据教学实际,及时引导学生把所学的知识加以总结,使其逐步系统完善,并找出规律性的东西.
④迁移训练.总结所学内容,进行学法的理性反思,强化并进行迁移运用,在训练中掌握学法. (3)开设数学学法指导课.学法最好安排在起始年级(高一、初一)开设,时间一般是每周或每两周一课时,开设一学期或一学年,并列入数学教学计划.要结合正反例子讲,结合数学学科的具体知识和学法特点讲,结合学生的思想实际讲,边讲边示范边训练.例如,讲授名人和优秀学生学习的事例,或对反面典型进行剖析;介绍如何读书、如何复习、如何记忆等一般的学习方法;精讲数学解题的策略和思维方式;等等.当然学法课有时也可以由学生自己来上,或请优秀学生介绍经验,或请有关教师作专题报告,还可以采用讨论式.
(4)数学学法的矫正指导.学生在数学学习过程中总要暴露出这样那样的问题,这就需要老师对学生在学习中存在的问题有较清晰的认识,善于发现问题的症结,在教学工作过程中密切注意学情,加强调查与观察,最好对每个学生的学习情况建立个人档案,随时记载并采取相应措施予以针对性矫正,从而使学生改进学法,逐步掌握科学的学习策略,提高学习效率.
3.数学学习能力形成的指导
数学学习能力包括观察力、记忆力、思维力、想象力、注意力以及自学、交往、表达等能力.学习活动过程是一个需要深入探究的过程.在这一过程中,教师要挖掘教材因素,注意疏通信息渠道,善于引导学生积极思维,使学生不断发现问题或提出假设,检验解决问题,从而形成勇于钻研、不断探究的习惯,架设起学生由知识向能力、能力与知识相融合的金桥.由于这方面论述颇多,笔者仅就这方面的指导提出如下几个要求:第一,对不同层次学生的数学学习能力的培养提出不同的要求;第二,根据不同学习能力结合数学教学采取多种方法进行培养;第三,根据个别差异因材施教,培养数学学习能力,采取小步子、多指导训练的方式进行;第四,通过课外活动和参加社会实践,促进数学学习能力的发展.
总之,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,课上与课下结合,学法与教法结合,教师指导与学生探求结合,统一指导与个别指导结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法.
数学学习方法指导二1.做好预习:单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。坚持预习,找到疑点,变被动学习为主动学习,能大大提高学习效率噢,兴趣是最好的老师嘛。
2.认真听课:听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点(记住预习中的疑点了吗?更要听仔细了),听例题的解法和要求,听蕴含的数学思想和方法,听课堂小结。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题,大胆猜想。记,当然是指课堂笔记了,不是记得多就是有效的知道吗?影响了听课可就不如不记了,记什么,什么时候记,可是有学问的哩,记方法,记技巧,记疑点,记要求,记注意点,记住课后一定要整理笔记。
3.认真解题:课堂练习是最及时最直接的反馈,一定不能错过的,不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆,很重要噢。
4.及时纠错:课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,审题出问题了吗?概念模糊了吗?时间紧没来得及?不会做吗?切忌不要动不动就以粗心放过自己(形成习惯可就麻烦了),如果思路正确而计算出错,及时订正,必要时强化相关计算的训练。概念模糊和审题出错都说明你的学习容易出现似懂非懂却还不自知的状态,这可是学习数学的大忌,要坚决克服。至于不会做,当然要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
5.学会总结:大人们常说,数学是一环扣一环,这意思是说知识间是紧密相关的,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,学习的目的性,必要性,知识性做到了然于心,融会贯通,解题时就能做到入手快,方法直接简单,即使平时课堂上没练到的题型,也能得心应手,即举一反三。
6.学会管理:管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷,这可是大考复习时最有用的资料知道吗?
数学学习方法指导三1.数学概念的学习方法。
数学概念是反映数学对象本质属性的思维形式,它的定义方式有描述性的,有指明外延的,有种概念加类差等方式。一个数学概念需要记住名称,叙述出本质属性,体会出所涉及的范围,并应用概念准确进行判断。这些问题老师没有要求,不给出学习方法,学生将很难有规律地进行学习。
下面我们归纳出数学概念的学习方法
⑴阅读概论,记住名称或符号。
⑵背诵定义,掌握特性。
⑶举出正反实例,体会概念反映的范围。
⑷进行练习,准确地判断。
⑤与其它概念进行比较,弄清概念间的关系。
2.数学公式的学习方法。
公式具有抽象性,公式中的字母代表一定范围内的无穷多个数。有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里。教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式。
我们介绍的数学公式的学习方法是:
⑴书写公式,记住公式中字母间的关系。
⑵懂得公式的来龙去脉,掌握推导过程。
⑶用数字验算公式,在公式具体化过程中体会公式中反映的规律。
⑷将公式进行各种变换,了解其不同的变化形式。
⑤将公式中的字母想象成抽象的框架,达到自如地应用公式。
3.数学定理的学习方法。
一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题。
下面我们归纳出数学定理的学习方法:
⑴背诵定理。
⑵分清定理的条件和结论。
⑶理解定理的证明过程。
⑷应用定理证明有关问题。
⑸体会定理与有关定理和概念的内在关系。
有的定理包含公式,如韦达定理、勾股定理、正弦定理,它们的学习还应该同公式的学习方法结合起来进行。