高分网 > 答案大全 > 智力测试题及答案 > 智力题大全及答案 >

智力数学趣味题及答案集锦(2)

时间: 俭聪2 智力题大全及答案

  解1:找准题中两个量,一个是人数,一个是月份,把人数当作“苹果”,把月份当作“抽屉”,那么问题就变成:13个苹果放12个抽屉里,那么至少有一个抽屉里放两个苹果。【已知苹果和抽屉,用“抽屉原理1”】

  例2:某班参加一次数学竞赛,试卷满分是30分。为保证有2人的得分一样,该班至少得有几人参赛?( )

  A. 30 B. 31 C. 32 D. 33

  解2:毫无疑问,参赛总人数可作“苹果”,这里需要找“抽屉”,使找到的“抽屉”满足:总人数放进去之后,保证有1个“抽屉”里,有2人。仔细分析题目,“抽屉”当然是得分,满分是30分,则一个人可能的得分有31种情况(从0分到30分),所以“苹果”数应该是31+1=32。【已知苹果和抽屉,用“抽屉原理2”】

  例3. 在某校数学乐园中,五年级学生共有400人,年龄最大的与年龄最小的相差不到1岁,我们不用去查看学生的出生日期,就可断定在这400个学生中至少有两个是同年同月同日出生的,你知道为什么吗?

  解3:因为年龄最大的与年龄最小的相差不到1岁,所以这400名学生出生的日期总数不会超过366天,把400名学生看作400个苹果,366天看作是366个抽屉,(若两名学生是同一天出生的,则让他们进入同一个抽屉,否则进入不同的抽屉)由“抽屉原则2”知“无论怎么放这400个苹果,一定能找到一个抽屉,它里面至少有2(400÷366=1……1,1+1=2)个苹果”。即:一定能找到2个学生,他们是同年同月同日出生的。

  例4:有红色、白色、黑色的筷子各10根混放在一起。如果让你闭上眼睛去摸,(1)你至少要摸出几根才敢保证至少有两根筷子是同色的?为什么?(2)至少拿几根,才能保证有两双同色的筷子,为什么?

  解4:把3种颜色的筷子当作3个抽屉。则:

  (1)根据“抽屉原理1”,至少拿4根筷子,才能保证有2根同色筷子;(2)从最特殊的情况想起,假定3种颜色的筷子各拿了3根,也就是在3个“抽屉”里各拿了3根筷子,不管在哪个“抽屉”里再拿1根筷子,就有4根筷子是同色的,所以一次至少应拿出3×3+1=10(根)筷子,就能保证有4根筷子同色。

  例5. 证明在任意的37人中,至少有4人的属相相同。

  解5:将37人看作37个苹果,12个属相看作是12个抽屉,由“抽屉原理2”知,“无论怎么放一定能找到一个抽屉,它里面至少有4个苹果”。即在任意的37人中,至少有4(37÷12=3……1,3+1=4)人属相相同。

  例6:某班有个小书架,40个同学可以任意借阅,试问小书架上至少要有多少本书,才能保证至少有1个同学能借到2本或2本以上的书?

  分析:从问题“有1个同学能借到2本或2本以上的书”我们想到,此话对应于“有一个抽屉里面有2个或2个以上的苹果”。所以我们应将40个同学看作40个抽屉,将书本看作苹果,如某个同学借到了书,就相当于将这个苹果放到了他的抽屉中。

  解6:将40个同学看作40个抽屉,书看作是苹果,由“抽屉原理1”知:要保证有一个抽屉中至少有2个苹果,苹果数应至少为40+1=41(个)。即:小书架上至少要有41本书。

  下面我们来看两道国考真题:

  例7:(国家公务员考试2004年B类第48题的珠子问题):

  有红、黄、蓝、白珠子各10粒,装在一个袋子里,为了保证摸出的珠子有两颗颜色

  相同,应至少摸出几粒?( )

  A.3 B.4 C.5 D.6

  解7:把珠子当成“苹果”,一共有10个,则珠子的颜色可以当作“抽屉”,为保证

  摸出的珠子有2颗颜色一样,我们假设每次摸出的分别都放在不同的“抽屉”里,摸了4

  个颜色不同的珠子之后,所有“抽屉”里都各有一个,这时候再任意摸1个,则一定有

  一个“抽屉”有2颗,也就是有2颗珠子颜色一样。答案选C。

  例8:(国家公务员考试2007年第49题的扑克牌问题):

  从一副完整的扑克牌中,至少抽出( )张牌,才能保证至少6张牌的花色相同?

  A.21 B.22 C.23 D.24

  解8:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1个“抽屉”里有6张花色一样。答案选C。

  归纳小结:解抽屉问题,最关键的是要找到谁为“苹果”,谁为“抽屉”,再结合两个原理进行相应分析。可以看出来,并不是每一个类似问题的“抽屉”都很明显,有时候“抽屉”需要我们构造,这个“抽屉”可以是日期、扑克牌、考试分数、年龄、书架等等变化的量,但是整体的出题模式不会超出这个范围。

  八.“牛吃草”问题

  牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

  解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

  这类问题的基本数量关系是:

  1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。

  2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。

  下面来看几道典型试题:

  例1.

  由于天气逐渐变冷,牧场上的草每天一均匀的速度减少。经计算,牧场上的草可供20头牛吃5天,或供16头牛吃6天。那么可供11头牛吃几天?( )

  A.12 B.10 C.8 D.6

  【答案】C。

  解析:设每头牛每天吃1份草,则牧场上的草每天减少(20×5-16×6)÷(6-5)=4份草,原来牧场上有20×5+5×4=120份草,故可供11头牛吃120÷(11+4)=8天。

  例2.

  有一片牧场,24头牛6天可以将草吃完;21头牛8天可以吃完,要使牧草永远吃不完,至多可以放牧几头牛?( )

  A.8 B.10 C.12 D.14

  【答案】C。

  解析:设每头牛每天吃1份草,则牧场上的草每天生长出(21×8-24×6)÷(8-6)=12份,如果放牧12头牛正好可吃完每天长出的草,故至多可以放牧12头牛。

  例3.

  有一个水池,池底有一个打开的出水口。用5台抽水机20小时可将水抽完,用8台抽水机15小时可将水抽完。如果仅靠出水口出水,那么多长时间将水漏完?( )

  A.25 B.30 C.40 D.45

  【答案】D。

  解析:出水口每小时漏水为(8×15-5×20)÷(20-15)=4份水,原来有水8×15+4×15=180份,故需要180÷4=45小时漏完。

  练习:

  1.一片牧草,可供16头牛吃20天,也可以供80只羊吃12天,如果每头牛每天吃草量等于每天4只羊的吃草量,那么10头牛与60只羊一起吃这一片草,几天可以吃完?( )

  A.10 B.8 C.6 D.4

  2.两个孩子逆着自动扶梯的方向行走。20秒内男孩走27级,女孩走了24级,按此速度男孩2分钟到达另一端,而女孩需要3分钟才能到达。则该扶梯静止时共有多少级可以看见?( )

  A.54 B.48 C.42 D.36

  3.22头牛吃33公亩牧场的草,54天可以吃尽,17头牛吃同样牧场28公亩的草,84天可以吃尽。请问几头牛吃同样牧场40公亩的草,24天吃尽?( )

  A.50 B.46 C.38 D.35

  九.利润问题

  利润就是挣的钱。利润占成本的百分数就是利润率。商店有时减价出售商品,我们把它称为“打折”,几折就是百分之几十。如果某种商品打“八折”出售,就是按原价的80%出售;如果某商品打“八五”折出售,就是按原价的85%出售。利润问题中,还有一种利息和利率的问题,属于百分数应用题。本金是存入银行的钱。利率是银行公布的,是把本金看做单位“1”,按百分之几或千分之几付给储户的。利息是存款到期后,除本金外,按利率付给储户的钱。本息和是本金与利息的和。

  这一问题常用的公式有:

  定价=成本+利润

  利润=成本×利润率

  定价=成本×(1+利润率)

  利润率=利润÷成本

  利润的百分数=(售价-成本)÷成本×100%

  售价=定价×折扣的百分数

  利息=本金×利率×期数

  本息和=本金×(1+利率×期数)

  例1 某商品按20%的利润定价,又按八折出售,结果亏损4元钱。这件商品的成本是多少元?

  A.80 B.100 C.120 D.150

  【答案】B。解析:现在的价格为(1+20%)×80%=96%,故成本为4÷(1-96%)=100元。

  例2 某商品按定价出售,每个可以获得45元的利润,现在按定价的八五折出售8个,按定价每个减价35元出售12个,所能获得的利润一样。这种商品每个定价多少元?( )

  A.100 B.120 C.180 D.200

  【答案】D。解析:每个减价35元出售可获得利润(45-35)×12=120元,则如按八五折出售的话,每件商品可获得利润120÷8=15元,少获得45-15=30元,故每个定价为30÷(1-85%)=200元。

  例3 一种商品,甲店进货价比乙店便宜12%,两店同样按20%的利润定价,这样1件商品乙店比甲店多收入24元,甲店的定价是多少元?( )

  A.1000 B.1024 C.1056 D.1200

  【答案】C。解析:设乙店进货价为x元,可列方程20%x-20%×(1-12%)x=24,解得x=1000,故甲店定价为1000×(1-12%)×(1+20%)=1056元。

  练习:

  1.书店卖书,凡购同一种书100本以上,就按书价的90%收款,某学校到书店购买甲、乙两种书,其中乙书的册数是甲书册数的 ,只有甲种书得到了优惠,这时,买甲种书所付总钱数是买乙种书所付钱数的2倍,已知乙种书每本定价是1.5元,优惠前甲种书每本定价多少元?

  A.4 B.3 C.2 D.1

  2.某书店对顾客实行一项优惠措施:每次买书200元至499.99元者优惠5%,每次买书500元以上者(含500元)优惠10%。某顾客到书店买了三次书,如果第一次与第二次合并一起买,比分开买便宜13.5元;如果三次合并一起买比三次分开买便宜39.4元。已知第一次付款是第三次付款的 ,这位顾客第二次买了多少钱的书?

  A.115 B.120 C.125 D.130

  3.商店新进一批洗衣机,按30%的利润定价,售出60%以后,打八折出售,这批洗衣机实际利润的百分数是多少?

  A.18.4 B.19.2 C.19.6 D.20

  十.平均数问题

  这里的平均数是指算术平均数,就是n个数的和被个数n除所得的商,这里的n大于或等于2。通常把与两个或两个以上数的算术平均数有关的应用题,叫做平均数问题。 平均数应用题的基本数量关系是:

  总数量和÷总份数=平均数

  平均数×总份数=总数量和

  总数量和÷平均数=总份数

  解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。

  例1: 在前面3场击球游戏中,某人的得分分别为130、143、144。为使4场游戏得分的平均数为145,第四场他应得多少分?( )

  【答案】C。解析:4场游戏得分平均数为145,则总分为145×4=580,故第四场应的580-130-143-144=163分。

  例2: 李明家在山上,爷爷家在山下,李明从家出发一每分钟90米的速度走了10分钟到了爷爷家。回来时走了15分钟到家,则李 是多少?( )

  A.72米/分 B.80米/分 C.84米/分 D90米/分

  【答案】A。解析:李明往返的总路程是90×10×2=1800(米),总时间为10+15=25 均速度为1800÷25=72米/分。

  例3: 某校有有100个学生参加数学竞赛,平均得63分,其中男生平均60分,女生平均70分,则男生比女生多多少人?( )

  A.30 B.32 C.40 D.45

  【答案】C。解析:总得分为63×100=6300,假设女生也是平均60分,那么100个学生共的6000分,这样就比实得的总分少300分。这是女生平均每人比男生高10分,所以这少的300分是由于每个女生少算了10分造成的,可见女生有300÷10=30人,男生有100-30=70人,故男生比女生多70-30=40人。

  练习:

  1. 5个数的平均数是102。如果把这5个数从小到大排列,那么前3个数的平均数是70,后3个数的和是390。中间的那个数是多少?( ) A.80 B.88 C.90 D.96

  2. 甲、乙、丙3人平均体重47千克,甲与乙的平均体重比丙的体重少6千克,甲比丙少3

  千克,则乙的体重为( )千克。 A.46 B.47 C.43 D.42

  3. 一个旅游团租车出游,平均每人应付车费40元。后来又增加了8人,这样每人应付的车

  费是35元,则租车费是多少元?( ) A.320 B.2240 C.2500 D.320

  十一.方阵问题

  学生排队,士兵列队,横着排叫做行,竖着排叫做列。如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。

  核心公式:

  1.方阵总人数=最外层每边人数的平方(方阵问题的核心)

  2.方阵最外层每边人数=(方阵最外层总人数÷4)+1

  3.方阵外一层总人数比内一层总人数多2

  4.去掉一行、一列的总人数=去掉的每边人数×2-1

  例1 学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?

  A.256人 B.250人 C.225人 D.196人 (2002年A类真题)

  解析:正确答案为A。方阵问题的核心是求最外层每边人数。

  根据四周人数和每边人数的关系可以知:每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。

  方阵最外层每边人数:60÷4+1=16(人) 整个方阵共有学生人数:16×16=256(人)。

  例2 参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?

  分析 如下图表示的是一个五行五列的正方形队列。从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人,因而我们可以得到如下公式:

  去掉一行、一列的总人数=去掉的每边人数×2-1

  解析:方阵问题的核心是求最外层每边人数。

  原题中去掉一行、一列的人数是33,则去掉的一行(或一列)人数=(33+1)÷2=17

  方阵的总人数为最外层每边人数的平方,所以总人数为17×17=289(人)

  练习:

  1. 小红把平时节省下来的全部五分硬币先围成个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是( ):

  A.1元 B.2元 C.3元 D.4元 (2005年中央真题)

  2. 某仪仗队排成方阵,第一次排列若干人,结果多余100人;第二次比第一次每行、每列都增加3人,又少29人。仪仗队总人数为多少? 答案:1.C 2. 500人

  十二.年龄问题

  主要特点是:时间发生变化,年龄在增长,但是年龄差始终不变。年龄问题往往是“和差”、“差倍”等问题的综合应用。解题时,我们一定要抓住年龄差不变这个解题关键。

  解答年龄问题的一般方法:

  几年后的年龄=大小年龄差÷倍数差-小年龄

  几年前的年龄=小年龄-大小年龄差÷倍数差

  例1:

  甲对乙说:当我的岁数是你现在岁数时,你才4岁。乙对甲说:当我的岁数到你现在的岁数时,你将有67岁,甲乙现在各有:

  A.45岁,26岁 B.46岁,25岁 C.47岁,24岁 D.48岁,23岁

  【答案】B。

  解析:甲、乙二人的年龄差为(67-4)÷3=21岁,故今年甲为67-21=46岁,乙的年龄为45-21=25岁。

  例2:

  爸爸、哥哥、妹妹现在的年龄和是64岁。当爸爸的年龄是哥哥的3倍时,妹妹是9岁;当哥哥的年龄是妹妹的2倍时,爸爸34岁。现在爸爸的年龄是多少岁?

  A.34 B.39 C.40 D.42

  【答案】C。

  解析:解法一:用代入法逐项代入验证。解法二,利用“年龄差”是不变的,列方程求解。设爸爸、哥哥和妹妹的现在年龄分别为:x、y和z。那么可得下列三元一次方程:x+y+z=64;x-(z-9)=3[y-(z-9)];y-(x-34)=2[z-(x-34)]。可求得x=40。

  例3:

  1998年,甲的年龄是乙的年龄的4倍。2002年,甲的年龄是乙的年龄的3倍。问甲、乙二人2000年的年龄分别是多少岁?

  A.34岁,12岁 B.32岁,8岁 C.36岁,12岁 D.34岁,10岁

  【答案】C。

  解析:抓住年龄问题的关键即年龄差,1998年甲的年龄是乙的年龄的4倍,则甲乙的年龄差为3倍乙的年龄,2002年,甲的年龄是乙的年龄的3倍,此时甲乙的年龄差为2倍乙的年龄,根据年龄差不变可得

  3×1998年乙的年龄=2×2002年乙的年龄

  3×1998年乙的年龄=2×(1998年乙的年龄+4)

  1998年乙的年龄=4岁

  则2000年乙的年龄为10岁。

  练习:

  1. 爸爸在过50岁生日时,弟弟说:“等我长到哥哥现在的年龄时,我和哥哥的年龄之和等于那时爸爸的年龄”,那么哥哥今年多少岁?

  A.18 B.20 C.25 D.28

  2. 甲、乙两人的年龄和正好是80岁,甲对乙说:“我像你现在这么大时,你的年龄正好是我的年龄的一半。”甲今年多少岁?( )

  A.32 B.40 C.48 D.45

  3. 父亲与儿子的年龄和是66岁,父亲的年龄比儿子年龄的3倍少10岁,那么多少年前父亲的年龄是儿子的5倍?( )

  A.10 B.11 C.12 D.13

  十三. 比例问题

  解决好比例问题,关键要从两点入手:第一,“和谁比”;第二,“增加或下降多少”。

  例1 b比a增加了20%,则b是a的多少? a又是b的多少呢?

  解析:可根据方程的思想列式得 a×(1+20%)=b,所以b是a的1.2倍。

  A/b=1/1.2=5/6,所以a 是b的5/6。

  例2 养鱼塘里养了一批鱼,第一次捕上来200尾,做好标记后放回鱼塘,数日后再捕上100尾,发现有标记的鱼为5尾,问鱼塘里大约有多少尾鱼?

  A.200 B.4000 C.5000 D.6000 (2004年中央B类真题)

  解析:方程法:可设鱼塘有X尾鱼,则可列方程,100/5=X/200,解得X=4000,选择B。

  例3 2001年,某公司所销售的计算机台数比上一年度上升了20%,而每台的价格比上一年度下降了20%。如果2001年该公司的计算机销售额为3000万元,那么2000年的计算机销售额大约是多少?

  A.2900万元 B.3000万元 C.3100万元 D.3300万元(2003年中央A类真题)

  解析:方程法:可设2000年时,销售的计算机台数为X,每台的价格为Y,显然由题意可知,2001年的计算机的销售额=X(1+20%)Y(1-20%),也即3000万=0.96XY,显然XY≈3100。答案为C。

  特殊方法:对一商品价格而言,如果上涨X后又下降X,求此时的商品价格原价的多少?或者下降X再上涨X,求此时的商品价格原价的多少?只要上涨和下降的百分比相同,我们就可运用简化公式,1-X 。但如果上涨或下降的百分比不相同时则不可运用简化公式,需要一步一步来。对于此题而言,计算机台数比上一年度上升了20%,每台的价格比上一年度下降了20%,因为销售额=销售台数×每台销售价格,所以根据乘法的交换律我们可以看作是销售额上涨了20%又下降了20%,因而2001年是2000年的1-(20%) =0.96,2001年的销售额为3000万,则2000年销售额为3000÷0.96≈3100。

  例4 生产出来的一批衬衫中大号和小号各占一半。其中25%是白色的,75%是蓝色的。如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?

  A.15 B.25 C.35 D.40 (2003年中央A类真题)

  解析:这是一道涉及容斥关系(本书后面会有专题讲解)的比例问题。

  根据已知 大号白=10件,因为大号共50件,所以,大号蓝=40件;

  大号蓝=40件,因为蓝色共75件,所以,小号蓝=35件;

  此题可以用另一思路进行解析(多进行这样的思维训练,有助于提升解题能力)

  大号白=10件,因为白色共25件,所以,小号白=15件;

  小号白=15件,因为小号共50件,所以,小号蓝=35件;

  所以,答案为C。

  例5 某企业发奖金是根据利润提成的,利润低于或等于10万元时可提成10%;低于或等于20万元时,高于10万元的部分按7.5%提成;高于20万元时,高于20万元的部分按5%提成。当利润为40万元时,应发放奖金多少万元?

  A.2 B.2.75 C.3 D.4.5 (2003年中央A类真题)

  解析:这是一个种需要读懂内容的题型。根据要求进行列式即可。

  奖金应为 10×10%+(20-10)×7.5%+(40-20)×5%=2.75

  所以,答案为B。

  例6 某企业去年的销售收入为1000万元,成本分生产成本500万元和广告费200万元两个部分。若年利润必须按P%纳税,年广告费超出年销售收入2%的部分也必须按P%纳税,其它不纳税,且已知该企业去年共纳税120万元,则税率P%为

  A.40% B.25% C.12% D.10% (2004年江苏真题)

  解析:选用方程法。根据题意列式如下:

  (1000-500-200)×P%+(200-1000×2%)×P%=120

  即 480×P%=120

8592