高分网 > 初中学习方法 > 初二学习方法 > 初二数学 >

《等腰三角形的轴对称性》教学设计

时间: 欣欣2 初二数学

  有两边相等,且底角相等的三角形叫等腰三角形(等边三角形),相等的两个边称为这个三角形的腰。以下是与其相关的教案范文,欢迎大家参阅!

  《等腰三角形的轴对称性》教学设计1

  教学目标

  1.掌握等腰三角形的判定定理.

  2.知道等边三角形的性质以及等边三角形的判定定理.

  3.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径.

  4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力.

  教学重点

  熟练地掌握等腰三角形的判定定理.

  教学难点

  正确熟练地运用定理解决问题及简洁地逻辑推理.

  教学过程(教师活动)

  学生活动

  设计思路

  前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识.

  本节课我们将继续学习等腰三角形的轴对称性.

  一、创设情境

  如图所示△ABC是等腰三角形,AB=AC,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C.请同学们想一想,有没有办法把原来的等腰三角形ABC重新画出来?大家试试看.

  1.学生观察思考,提出猜想.

  2.小组交流讨论.

  一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的方法,另一方面通过创设情境,自然地引入课题.

  二、探索发现一

  请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:

  (1)在半透明纸上画一条长为6cm的线段BC.

  (2)以BC为始边,分别以点B和点C为顶点,在BC的同侧用量角器画两个相等的锐角,两角终边的交点为A.

  (3)用刻度尺找出BC的中点D,连接AD,然后沿AD对折.

  问题1:AB与AC有什么数量关系?

  问题2:请用语言叙述你的发现.

  1.根据实验要求进行操作.

  2.画出图形、观察猜想.

  3.小组合作交流、展示学习成果.

  演示折叠过程为进一步的说理和推理提供思路.

  通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验.

  三、分析证明

  思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?

  问题3:已知如图,在△ABC中,

  ∠B=∠C.求证:AB=AC.

  引导学分析问题,综合证明.

  思考:你还有不同的证明方法吗?

  问题4:“等边对等角”与“等角对等边”, 它们有什么区别和联系?

  思考——讨论——展示.

  1.学生独立完成证明过程的基础上进行小组交流.

  2.班级展示:小组代表展示学习成果.

  在实验的基础上获得问题解决的思路,在合情推理的基础上让学生经历演绎推理的过程,培养学生的逻辑思维能力.

  通过“你有不同的证明方法吗”的问题,让学生学会质疑,学会从不同的角度思考问题,培养学生的发散性思维,激发探究问题的欲望和兴趣,通过对问题4的思考让学生加深对性质与判定的理解.

  四、探索发现二

  问题5:什么是等边三角形?等边三角形与等腰三角形有什么区别和联系?

  问题6:等边三角形有什么性质?

  问题7:一个三角形满足什么条件就是等边三角形了?为什么?

  1.学生阅读教材,进行自主学习.

  2.小组讨论交流.

  3.展示学习成果:等边三角形的概念、等边三角形的性质、

  等边三角形的判定.

  培养学生阅读教材的学习习惯和自主学习能力.

  引导学生经历合情推理和演绎推理的过程,感受合情推理和演绎推理都是人们认识事物的重要途径.

  五、学以致用

  请同学完成课本P63-64练习第1、2、3题.

  学生独立思考、小组讨论、展示交流、相互评价.

  引导学生学会分析问题和解决问题,理解分析和综合之间的关系,培养学生分析问题和解决问题的能力.

  巩固学习成果,加强知识的理解和方法的应用,培养分析问题、解决问题的能力.

  六、归纳小结

  1.这节课你有怎样的收获?还有哪些困惑呢?

  2.布置作业:

  课本P67习题2.5第7、8、10题.

  1.学生以小组为单位归纳本节课所学习的知识、方法.

  2.展示交流,相互补充,建立知识体系.

  3.讨论困惑问题.

  4.完成作业.

  引导学生进行知识归纳整理,学会学习,培养学生发现问题、提出问题的学习能力.

17944