八年级最新数学暑假生活答案(4)
∴D点坐标为(6,8),
而点A为OD的中点,
∴A点坐标为(3,4),
设反比例函数的解析式为y=k/x,
把A(3,4)代入得
k=3×4=12,
∴反比例函数的解析式为y=12/x;
(2)令x=6,则y=12/6=2,
∴点B的坐标为(6,2);
设直线AB的解析式为y=kx+b,
把A(3,4)和B(6,2)代入得,
3k+b=4
6k+b=2
解得k=-2/3
b=6,
∴直线AB的解析式为y=-2/3x+6.
(1)证明:∵∠ADC=∠GDE=90°,
∴∠ADC+∠ADG=∠GDE+∠ADG,
即∠ADE=∠CDG,
在△ADE与△CDG中
∵AD=CD
∠ADE=∠CDG
DE=DG
∴△ADE≌△CDG(SAS),
∴AE=CG;
(2)由(1)得△ADE≌△CDG,
则∠DAE=∠DCG,
又∵∠ANM=∠CND,
∴△AMN∽△CDN,
∴AN/CN=MN/DN,
即AN?DN=CN?MN.
∵ △ABC、△DEP是等腰直角三角
∴∠B=∠C=∠DPE=45°
∵∠BGP+∠BPG=180°-∠B=135°
∠CPF+∠BPG=180°-∠DPE=135°
∴∠BGP=∠CPF
∴△PBG∽△FCP
∵△ABC、△DEP是等腰直角三角形
∴∠DAE=∠ACF=∠ABG=45°
∵
∴△PBG∽△FPG
∵
∴△FCP∽△FPG
∴△PBG∽△FCP
解:(1)∵△ECF的面积与四边形EABF的面积相等,
∴S△ECF:S△ACB=1:2,
又∵EF‖AB,
∴△ECF∽△ACB,
∴S△ECF/S△ACB=(CE/CA)?=1/2,且AC=4,
∴CE=2根号2;
(2)设CE的长为x,
∵△ECF∽△ACB,
∴CE/CA=CF/CB,
∴CF=3/4x,
∵C△ECF=C四边形EABF
∴x+EF+3/4x=(4-x)+5+(3-3/4x)+EF
解得x=24/7,
∴CE的长为24/7.
第三题太长了
存在
EF=60/37或120/49
练习14 BCDBCAAB a y=x/2 9 4 1 15 2或12/7 2分之根号2
17.原式=4/x-3 代入=-1
18.解得-2
19.∵∠DCE=1/2∠ACE
又∵∠DCE=1/2ABC+∠D
∴1/2∠ACE=1/2ABC+∠D
∵∠ACE=∠ABC+∠A
1/2∠ACE=1/2∠ABC+1/2∠A
∴∠D=1/2∠A
20.解得:-4x=a ∵x-1=0 ∴x=1 ∴a=-4(怎么我算出来是a=4咧?)
21.(1)1/2 (2)树状图自己画。。P(小亮获得)=5/9∴不公平
22.(1)AC=CD,CF平分∠ACD
∴AF=DF
又∵E是AB中点
∴EF‖BC
(2)∵EF=1/2BD
∴S△ABD=4SAEF=4×6=24
23.(1)当A(0,2)时,C(3,2)B(-1,2)
∴AB=1,AC=3
∴AB:AC=1:3
(2)当A(0,a)时,C(6/a,a),B(-2/a,a)
∴AB:AC=1:3
(3)15